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Abstract 

Hermann Weyl published a brief survey as preface to a review of The Philosophy of 
Bertrand Russell in 1946. In this survey he used the phrase, “The Fall and Original Sin 
of Set Theory.” Investigating the background of this remark will require that we pay 
attention to a number of issues within the foundations of mathematics. For example: 
Did God make the integers—as Kronecker alleged? Is mathematics set theory? 
Attention will also be given to axiomatic set theory and relevant ontic pre-conditions, 
such as the difference between number and number symbols, to number as “an aspect 
of objective reality” (Gödel), integers and induction (Skolem) as well as to the question 
if infinity—as endlessness—could be completed. In 1831 Gauss objected to viewing 
the infinite as something completed, which is not allowed in mathematics. It will be 
argued that the actual infinite is rather connected to what is present “at once,” as an 
infinite totality. By the year 1900 mathematicians believed that mathematics had 
reached absolute rigour, but unfortunately the rest of the twentieth century witnessed 
the opposite. The axiom of infinity ruined the expectations of logicism—mathematics 
cannot be reduced to logic. The intuitionism of Brouwer, Weyl and others launched a 
devastating attack on classical analysis, further inspired by the outcome of Gödel’s 
famous proof of 1931, in which he has shown that a formal mathematical system is 
inconsistent or incomplete. Intuitionism created a whole new mathematics, which finds 
no counter-part in classical mathematics. Slater remarked that within this logical 
paradise of Russell lurked a serpent, hidden behind the unjustified employment of the 
at once infinite. According to Weyl, “This is the Fall and original sin of set theory for 
which it is justly punished by the antinomies.” In conclusion, a few systematic 
distinctions are introduced. 
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The title of this article alludes to a statement made by Hermann Weyl in 1946 in a brief survey 
serving as preface to a review of The Philosophy of Bertrand Russell. In this Preface, Weyl 
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discusses the relation of mathematics and logic. It was published in the journal American 
Mathematical Monthly. Our aim is to investigate the underlying issues behind this remark of 
Weyl. This will invite us to reflect on the nature of mathematics and some of the reasons why 
twentieth century mathematics gave rise to alternative trends of thought, such as neo-
intuitionism (Brouwer, Weyl, Heyting, Dummett, Troelstra and others—differing from the 
school of Kronecker), logicism (Frege, Russell and Gödel) and axiomatic formalism (Hilbert 
and his followers). Paul Bernays, the younger co-worker of Hilbert, articulated a stance that 
provides an alternative view on the issues involved (see Bernays 1976, 74 ff. and 188). 
 
Did God Make the Integers? 
Since Georg Cantor erected what is today still known as Set Theory, in a time-span of 25 years, 
unexpected and surprising developments surfaced within the discipline of mathematics. 
Particularly during the 1880s, Cantor suffered under the criticism of Leopold Kronecker, who 
held the prestigious chair in mathematics at the University of Berlin. Kronecker is well-known 
for his statement that God made the integers and everything else is human handiwork. More 
recently Stephen Hawking edited a reader and chose as title for it: God Created the Integers 
(Hawking 2005). 
 
However, upon closer reflection, it is clear that Kronecker and Hawking are mistaken. What 
God created is a multiplicity of natural and societal entities—which are not yet numbered. The 
given “pre-counted” multiplicity may call forth a counting reaction from human beings, but it 
is only then that numerals (number symbols) are invented. These numerals may initially refer 
to the natural numbers (1, 2, 3, 4, 5, ...) or the integers (0, 1, 2, 3, 4, …). When there is a 
multitude of entities, they could be counted or even collected as members of what Cantor calls 
a set (Menge). Cantor’s set concept contains two key elements (or, if one prefers to designate 
them in such a way, two primitive terms). In the first place a multiplicity of properly distinct 
objects of our intuition or thought, and secondly uniting this multiplicity into a whole (zu einem 
Ganzen) (Cantor 1932[1962], 282). 
 
Set Theory and the Nature of Mathematics 
How does this set concept link up with possible definitions of mathematics? Is mathematics 
the science of formal structures (Körner 1968, 72, Meschkowski 1972, 356) or is it the science 
of idealised structures (Bernays 1976, 176), or perhaps the science of the infinite (Weyl 1932, 
7; 1966, 89)? Or should one straight-forwardly hold that mathematics is set theory (Maddy 
1997, 36; see Hersh 1997, 27)? 
 
If it is asserted that mathematics is Set Theory, “unsurmountable” problems immediately 
emerge because such a view cannot account for the history of mathematics. Whatever existed 
before the invention of Set Theory was not mathematics.  
 
Hersh is sharply critical of the reductionist view that mathematics is set theory because one 
cannot say that those mathematicians who lived long before the invention of set theory, in fact, 
thought in terms of set theory. His categorical statement reads: “This claim obscures history, 
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and obscures the present, which is rooted in history” (Hersh 1997, 27), adding the important 
remark: “An adequate philosophy of mathematics must be compatible with the history of 
mathematics. It should be capable of shedding light on that history” (Hersch 1997, 27). 
 
Sets in Axiomatic Set Theory  
Alternatively, we may start with the observation that any axiomatic set theory introduces at 
least one “primitive” term. It could be the membership relation (as in Zermelo-Fraenkel set 
theory) or even the concept of a set as such. However, Gödel once pointed out that, as yet, we 
do not even have a satisfactory non-circular definition of the term “set”: 
 

The operation “set of x's” (where the variable “x” ranges over some given kind of objects) 
cannot be defined satisfactorily (at least not in the present state of knowledge), but can only be 
paraphrased by other expressions involving again the concept of set, such as: “multitude of x's”, 
“combination of any number of x's”, “part of the totality of x's”, where a “multitude” 
(“combination”, “part”) is conceived as something that exists in itself, no matter whether we 
can define it in a finite number of words (so that random sets are not excluded). (Gödel 1964, 
262) 

 
Any given definition of mathematics, therefore, presupposes a step backwards—assuming a 
position where one is no longer doing mathematics but is involved in reflecting on 
mathematics. This entails that any given definition will never be a part of mathematics. Just 
consider the statement that “mathematics is the science of formal structures/idealised 
structures/the infinite, and so on.” Surely this “definition” is not a theorem, proof or derivation 
found in algebra, topology, set theory or any other part of mathematics. 
 
One cannot define the discipline of mathematics exclusively with reference to any sub-
discipline of mathematics either. What is required is a point of orientation that is not the 
creation of the working mathematician, since it must be given as something “out there” before 
special scientific mathematical work commences. 
 
An Ontic Point of Connection 
Hao Wang notes that Kurt Gödel is very “fond of an observation attributed to Bernays”: 
 

That the flower has five petals is as much part of objective reality as that its color is red. (quoted 
by Wang 1988, 202) 

 
In spite of the fact that Gödel did not dispose over a theory in which the various modal aspects 
of reality are accounted for, he here unmistakably struggles with this aspectual dimension of 
reality (the meaning of the term aspectual will soon be clarified below). 
  
Kattsoff argues that analogous to the nature of sensory objects, we may also recognise 
mathematical entities designated as intellectual objects—because they are observed by the 
intellect (Kattsoff 1973, 33). Later he calls this approach “quasi-empirical” (Kattsoff 1973, 40). 
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Number and number symbols 
Gödel and Kattsoff wrestle with acknowledging that the numerical aspect of reality is not a 
mental construct. The only option is to explore this given functional trait of reality through an 
analysis of the meaning of given multiplicities. The first step is normally to “create” 
numerals—number symbols—such as “1”, “2”, “3”, and so on). Simple acts of counting 
explore the primitive meaning of the arithmetical aspect of reality—in a twofold way:  
 

(i) Every successive number symbol (“1”, “2”, “3” etc.) is correlated with …  
(ii) … whatever is counted. Implicit in this account is the correlation of number symbols 

and the entities counted. 
 
That is to say, there is a one-to-one relation which became a key feature of comparing sets. But 
before we pursue this avenue further, we have to say a bit more about the ontic status of modal 
aspects.  
 
In opposition to Descartes, who claims that number and all universals are modes of thought 
(Descartes 1965a, 187, Principles of Philosophy, Part I, LVII), we have to recognise the ontic 
status both of the concrete, multi-aspectual entities and the modes of reality. When the word 
“factual” is used to designate what is given in an ontic sense prior to human cognition, then its 
meaning honours the epistemic side of what is factually at hand. 
 
Gödel: Number as an “Aspect of Objective Reality” 
Perhaps this plea for acknowledging the aspects of reality as truly existing (and not merely 
products of human thought) found its most impressive advocate in the thought of Gödel, with 
his abovementioned idea of “semiperceptions” when it concerns “mathematical objects.” Next 
to a physical causal context within which something can be “given,” Gödel refers to data of a 
second kind, which are open to “semiperceptions.” Data of this second kind “cannot be 
associated with actions of certain things upon our sense organs” (Gödel quoted by Wang 1988, 
304). These “semiperceptions” relate to the functional aspects of reality. Gödel says: 
 

It by no means follows, however, [that they] are something purely subjective as Kant says. 
Rather they, too, may represent “an aspect of objective reality,” but, as opposed to the 
sensations, their presence in us may be due to another kind of relationship between ourselves 
and reality. (Gödel quoted by Wang 1988, 304) 

 
Once aspects of ontic reality are acknowledged, as noted earlier, it becomes understandable 
why Hersh is sharply critical of the reductionist view that mathematics is set theory, because 
one cannot say that mathematicians who preceded the invention of set theory in fact thought in 
set theoretic terms. According to him, an “adequate philosophy of mathematics must be 
compatible with the history of mathematics” and it “should be capable of shedding light on that 
history” (Hersch 1997, 27). 
 
These ontic conditions not only make possible our concept of numbers but also explain why 
someone like Bernays (1976, 45) rejects the conception that an axiomatic system in its entirety 
is an arbitrary construction. 
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According to Bernays (1976), one cannot justifiably object to the axiomatic procedure by 
viewing it as arbitrary, since regarding the systematic foundation of arithmetic we are not 
concerned with “an axiom system configured at will for the need of it, but with a systematic 
extrapolation of elementary number theory conforming to the nature of the matter” 
(naturgemäß—I am italicising). The “nature of the matter” contains an implicit reference to 
the ontic status of the “multiplicity aspect” of reality—and it presupposes an awareness of the 
difference between the various (modal, functional) aspects of reality and the dimension of 
concrete entities and events functioning within these aspects. 
 
Already in 1922, Skolem had a proper understanding of these issues. Yet, in spite of the 
objections of Kronecker and other intuitionists, Skolem had to concede that “the Cantorean 
theory completely won the day” [“daβ die Cantorsche Theorie bald vollständig Siegte”] 
(Skolem 1929, 8). Hilbert was quite impressed with Cantor’s set theory and even stated that 
no-one would drive us out of the paradise created for us by Cantor (Hilbert 1925, 170). 
 
Integers and Induction 
Skolem argues that arithmetic already has a sufficient foundation in inductive conclusions and 
recurrent definitions (Skolem 1922, 231). He points out that scholars working within the 
domain of set theory normally are convinced that the concept of an integer ought to be defined 
and that complete induction must be proved. He responds as follows: 
 

Yet it is clear that one cannot define or provide an endless foundation; sooner or later one 
encounters what is indefinable or unprovable. Then the only option is to ensure that the first 
starting points are immediately clear, natural and beyond doubt. The concept of an integer and 
the inferences by induction meet this condition, but it is definitely not met by the set theoretic 
axioms such as those of Zermelo or similar ones. If one wishes to derive the former concepts 
from the latter, then the set theoretic concepts ought to be simpler and employing them then 
ought to be more certain than working with complete induction—but this contradicts the real 
state of affairs totally. (Skolem 1922, 230) 

 
Restricting infinity to the successive infinite 
His own approach still continues the classical prohibition formulated by Gauβ in a letter to 
Schumacher in 1831: “So I protest against the use of an infinite magnitude as something 
completed, which is never allowed in mathematics” [“So protestiere ich gegen den Gebrauch 
einer unendlichen Groβe als einer vollendeten, welches in der Mathematik niemals erlaubt ist”] 
(Gauβ quoted by Meschkowski 1972, 31). 
 
The Completed Infinite? 
However, when one explores the meaning of Cantor’s definition of a set (mentioned earlier), it 
appears as if his set theory assumes that an uncompleted succession of numbers could be 
completed. One way of referring to what Aristotle designated as the actual infinite is, therefore, 
to speak of the completed infinite. But the contrast between the potential and actual infinite is 
for Cantor given in the difference between a variable and constancy. Variables point at 
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successive values, whereas actual infinity is firm and determined while at once exceeding every 
finite magnitude (Gröβe) (Cantor 1932[1962], 401). 
 
The fact that the initial Pythagorean claim, namely that everything is number, had to switch to 
space as mode of explanation, is still reflected in a spatially informed mode of speech, such as 
when the reference is to variable magnitudes, “veränderliche Gröβen”—instead of simply 
referring to variables [“nicht veränderlich, sondern vielmehr in allen seinen Teilen fest und 
bestimmt, eine richtige Konstante”]. 
 
The feature of being a genuine constant, determined and fixed in all its parts, is clearly derived 
from our acquaintance with what is not subject to change, but what is certainly not intended is 
any succession that comes to an end, to completion. This highlights an unintended flaw in the 
just-mentioned restriction of Gauβ: an infinite magnitude in mathematics as something 
completed is not allowed. Nowhere in Cantor’s definition of actual infinity is anything said or 
implied about the “completion” of an infinite process. Therefore, the expression “completed 
infinitude”—“als einer vollendeten”—is literally self-contradictory: what is without an end 
cannot have an end. Fischer criticises the attempt to arrive at the square root of “2” with the 
aid of rational numbers as being an antinomic fiction, the fiction of the “vollendet-
Unendlichen” [“the completed infinite”—Fischer 1933, 108]. 
 
From Variables to At Once 
The concept of a variable is accompanied by the notion of change, which is intimately linked 
to the connection between the kinematic aspect (constancy, uniform flow) and the physical 
aspect of reality (dynamic changes, variability). In addition, everyday life is familiar with the 
fact that change can only be detected if something remains constant.  
 
We have mentioned earlier that Skolem considers the concept of an integer and the inferences 
by induction to be simpler than the set theoretic ones. In 1929 he alludes to the antinomy of 
Russell who, independently from Zermelo, pointed out that if a set C has as elements all those 
sets A not having themselves as elements, then C is an element of C if and only if it is not an 
element of C. Skolem then mentions the attempt to avoid this antinomy by arguing that every 
set is not an element of itself. However, even within the axiomatisation of set theory the 
problems did not disappear, because the power-set axiom stipulates (within Zermelo-Fraenkel 
[ZF] set theory—Fraenkel, Bar-Hillel, Levy and Van Dalen [1973, 35]) that for any set a there 
exists the set whose members are just all the subsets of a: 
 
In symbols: 

∀𝑎𝑎∃𝑦𝑦∀𝑥𝑥(𝑥𝑥 ∈ 𝑦𝑦 ↔ 𝑥𝑥 ⊆ 𝑎𝑎) 

 
i.e., the initial set is then also a subset of itself—violating the proposed stipulation that every 
set is not an element of itself. Skolem adds the following problem: “Without general statements 
about ‘all’ sets one cannot build a set theory, and then, according to Cantor’s definition, these 
should form part of the totality of the elements of a set” (Skolem 1929, 9).  
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Comparing natural numbers, integers, and fractions does not cause problems in arithmetic, but 
the comparison of sets does entail complications. The most important problem concerns the 
fact that also infinite sets, according to Cantor, are uniting a multiplicity of elements (members 
in ZF set theory) into a whole—and a whole or totality is not given in succession but at once. 
When we replace the expression potential infinity with the successive infinite and actual infinity 
with the at once infinite, it would not be so easy to employ the mistaken expression “completed 
infinity.” 
 
The Connection between “At Once” and “Actual Infinity” 
Boyer (1959) points out that there is a vicious circle present in Cauchy’s understanding of 
irrational numbers. The latter attempted to prove his theorem, namely “that for a sequence to 
converge to a limit it is necessary and sufficient that the difference between Sp and Sq, for any 
values of p and q greater than n can be made less in absolute value than any assignable quantity 
by taking n sufficiently large” (Cauchy quoted in Boyer 1959). Although the necessity of the 
condition follows from the definition of convergence, the proof of the sufficiency of the 
condition requires a prior definition of the system of real numbers, of which the supposed limit 
S is one. However, without an initial definition of irrational numbers, this part of the proof begs 
the question. 
 
His argument is that irrational numbers should be the limits of sequences of rational numbers. 
Boyer summarises the underlying petitio principii as follows: 
 

But since a limit by definition is already defined as a number to which the terms of the sequence 
approach in such a way that ultimately the difference between this number and the terms of the 
sequence can be made less than any given number, the existence of the irrational number 
depends, in the definition of limit, upon the known existence, and hence the prior definition, of 
the very quantity whose definition is being attempted. (Boyer 1959, 232) 

 
In other words, one cannot define the square root of the number 2 (√2) as the limit of the 
sequence 1, 1.4, 1.41, 1.414, ... In order to prove this the definitions of limit and convergence 
require that there must be, prior to this, a defined or demonstrated number in existence serving 
as limit. 
 
Weierstrass, Dedekind and Cantor approached the circularity present in the idea that irrational 
numbers (real numbers) could be defined in terms of converging sequences of rational numbers 
(fractions), by taking recourse to the at once infinite.  
 
The constructivist mathematician, Paul Lorenzen, explains the classical idea of the at once 
infinite in a neat way by linking it to the lasting influence of geometry. 
 

This arithmetical concept of the set of all real numbers is apparently motivated by geometry. 
For this reason, one therefore still speaks about the arithmetical continuum … One 
imagines … the real numbers as being really present all at once—even every single real number 
as an infinite decimal fraction is presented as if the infinitely many digits all exist at once. 
[Dieser arithmetische Begriff der Menge aller reellen Zahlen ist augenscheinlich von der 
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Geometrie aus motiviert. Man spricht daher auch stets vom arithmetischen Kontinuum … Man 
stellt sich … die reelen Zahlen als alle auf einmal wirklich vorhanden vor—es wird sogar jede 
reelle Zahl als unendlicher Dezimalbruch selbst schon so vorgestellt, als ob die unendlich vielen 
Ziffern alle auf einmal existierten.] (Lorenzen 1972, 162–163) 

 
The discovery of the abovementioned antinomy regarding the set C having as elements those 
sets A not containing themselves as elements, contributed to the proliferation of diverging 
mathematical schools of thought during the previous century. At the Second International 
Congress of Mathematicians (Paris, 1900) Poincaré (quoted in Fraenkel et al. 1973) proudly 
announced: 
 

Today there remain in analysis only integers and finite or infinite systems of 
integers ... Mathematics ... has been arithmetized ... We may say today that absolute rigor has 
been obtained. (Fraenkel et al. 1973, 14) 

 
More than 70 years later, Fraenkel et al. conceded:  
 

Ironically enough, at the very same time that Poincaré made his proud claim, it had already 
turned out that the theory of the “infinite systems of integers”—nothing else but a part of set 
theory—was very far from having obtained absolute security of foundations. More than the 
mere appearance of antinomies in the basis of set theory, and thereby of analysis, it is the fact 
that the various attempts to overcome these antinomies, to be dealt with in the subsequent 
chapters, revealed a far-going and surprising divergence of opinions and conceptions on the 
most fundamental mathematical notions, such as set and number themselves, which induces us 
to speak of the third foundational crisis that mathematics is still undergoing. (Fraenkel et al. 
1973, 14) 

 
The Impasse of Logicism 
Frege, Dedekind, Russell and Gödel believed that mathematics could be based upon logic. 
Within this logicistic approach, Dedekind assumed an actual infinity of “objects” within my 
“Gedankenwelt” (Rucker 1982, 47 translates it with the term “mindscape”). 
 
The general aim of Russel’s Principles of Mathematics is to show that “mathematics and logic 
are identical” (see Slater 1922[2010], xxxiii). Russell introduces a logical class concept to 
achieve this goal. The number “2” is defined in the following way: “1 + 1 is the number of a 
class w which is the logical sum of two classes u and v which have no common terms and have 
each only one term. The chief point to be observed is that logical addition of numbers is the 
fundamental notion, while arithmetical addition of numbers is wholly subsequent” (Russell 
2010, 120). However, the meaning of number is clearly already used in order to distinguish 
between different (“logical”) classes. To be sure, he speaks about the sum of “two classes” 
where each of them contains “one” element. This presupposes an insight into the numerical 
meaning of the numbers “1” and “2”! As an effect, the number “2”, which was supposedly to 
be the outcome of logical addition, is presupposed by it! 
 
On a more general level, another problem faces the logicist approach. It turned out that the 
Axiom of Infinity [InfAx] exceeds the realm of logic. Fraenkel et al. remark: “It seems, then, 
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that the only really serious drawback in the Frege-Russell thesis is the doubtful status of InfAx, 
according to the interpretation intended by them” (Fraenkel et al. 1973, 186). 
 
The Intuitionistic Reaction to the At Once Infinite  
Already in his PhD of 1907, the Dutch mathematician L.E.J. Brouwer (also see Brouwer 1919; 
1964) gave an indication of his own subsequent development. He follows in the footsteps of 
Leopold Kronecker who wanted to reduce every mathematical subdiscipline (geometry 
excepted) to the concept of ordinal numbers, with the aim to “arithmetise” “arithmetic” which 
he equated with the discipline of mathematics. But Brouwer took another important step by 
acknowledging a key feature of continuity, namely its infinite divisibility. This captured the 
critical mind of Hermann Weyl, a former student of Hilbert. Weyl presented a paper in 1921 
on the New Foundational Crisis in Mathematics. He is critical of arithmeticism because it broke 
apart the continuum into a set of isolated points. In contrast to this, Weyl holds that it belongs 
to the essence of the continuum that it allows for an infinite divisibility: “… it belongs to the 
essence of the continuum that everyone of its parts allows for an unlimited continued division. 
… In order to restore the continuous coherence of points contemporary analysis, because it has 
set apart the continuum into a set of isolated points, had to take refuge to the concept of an 
environment” (Weyl 1921, 77). 
 
Laugwitz (1997) raised the same point in a related way by pointing out that classical analysis 
has resolved the continuum into a set of (isolated) points. Set theory then super-imposes upon 
it, with the auxiliary set theoretical construction of environments and open sets, a “topology” 
within which it is once again possible to speak of “continuity” (“Stetigkeit”) (see Laugwitz 
1997, 266). 
 
Although modern (axiomatic) set theory (Cantor, Zermelo, Fraenkel, Hilbert, Ackermann, Von 
Neumann) pretends to be purely atomistic, it actually, in the undefined term “set,” borrows the 
whole-parts relation from space (see below). This explains why Hao Wang informs us that 
Kurt Gödel speaks of sets as being “quasi-spatial”—and then adds the remark that he is not 
sure whether Gödel would have said the “same thing of numbers” (Wang 1988, 202). 
 
Weyl also explains this point in a later context where he contrasts the element-set relation with 
the part-whole relation: “Not in the connection of element and set, but in that of part to whole 
Brouwer views, in harmony with intuition, the essence of the continuum” (Weyl 1966, 74). 
 
Both Brouwer and Weyl had clarity about their own position regarding the notion of infinity. 
They rejected the at once infinite, and as a result, key elements of classical analysis cannot be 
upheld (see also Kaufmann 1930[1968]). The Bolzano-Weierstrass theorem is such an 
example. This theorem states that “every bounded infinite subset of Rp has a cluster point” 
(Bartle 1964, 76). Likewise, it is impossible, within intuitionistic mathematics, to show that 
there is a least lower bound or upper bound. Weyl (1921) mentions the case of a lower bound: 
“But of course the theorem of the lower bound of an arbitrary set of non-negative real numbers 
cannot be upheld.” 
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A Distinct Kind of Mathematics 
In order to appreciate what really happened within the intuitionistic school of mathematics, two 
quotations will be sufficient. Beth says: “It is clear that intuitionistic mathematics is not merely 
that part of classical mathematics which would remain if one removed certain methods not 
acceptable to the intuitionists. On the contrary, intuitionistic mathematics replaces those 
methods by other ones that lead to results which find no counterpart in classical mathematics” 
(Beth 1965, 89). Brouwer himself is quite clear:  
 

As a matter of course also the languages of the two mathematical schools diverge. And even in 
those mathematical theories which are covered by a neutral language, i.e. by a language 
understandable on both sides, either school operates with mathematical entities not recognized 
by the other one: there are intuitionist structures which cannot be fitted into any classical logical 
frame, and there are classical arguments not applying to any introspective image. Likewise, in 
the theories mentioned, mathematical entities recognized by both parties on each side are found 
satisfying theorems which for the other school are either false, or senseless, or even in a way 
contradictory. In particular, theorems holding in intuitionism, but not in classical mathematics, 
often originate from the circumstance that for mathematical entities belonging to a certain 
species, the possession of a certain property imposes a special character on their way of 
development from the basic intuition, and that from this special character of their way of 
development from the basic intuition, properties ensue which for classical mathematics are 
false. A striking example is the intuitionist theorem that a full function of the unity continuum, 
i.e. a function assigning a real number to every nonnegative real number not exceeding unity, 
is necessarily uniformly continuous. (Brouwer 1964, 79) 

 
The ultimate divergence is manifest in the fact that intuitionism rejects the at once infinite and 
with it the universal scope of the logical principle of the excluded middle. Weyl explains the 
situation: “Brouwer opened our eyes and made us see how far classical mathematics, nourished 
by a belief in the ‘absolute’ that transcends all human possibilities of realisation, goes beyond 
such statements as can claim real meaning and truth founded on evidence” (Weyl 1946, 9). In 
support of this statement, Weyl on the same page remarks that “Brouwer made it clear, as I 
think beyond any doubt, that there is no evidence supporting the belief in the existential 
character of the totality of all natural numbers, and hence the principle of the excluded middle 
… is without foundation.” The “there is” and “all” only makes “sense when applied to natural 
numbers,” that is to say to the existence of these numbers combined with “the idea of iteration.” 
 
Nonetheless, during the first few decades of the previous century, there was an atmosphere of 
optimism regarding the possibility to prove that mathematics is consistent and complete. When 
Hilbert received honorary citizenship at Königsberg in 1930, he concluded his presentation 
with the hopeful exclamation: “We must know, we shall know!” (It is enshrined on his grave: 
“Wir müβen wissen; wir werden wissen”—see Hilbert 1970, 387). Unfortunately, Kurt Gödel 
has proven in 1931 that a formal mathematical system is inconsistent or incomplete (Roos 
summarises this outcome neatly: “Een formeel wiskundig systeem is niet consistent of niet 
volledig” [Roos 2010, 27]). In other words, no system of axioms is capable—merely by 
employing its own axioms—to demonstrate its own consistency. Yourgrau remarks: “Not only 
was truth not fully representable in a formal theory, consistency, too, could not be formally 
represented” (Yourgrau 2005, 68). 
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Grünfeld phrases the outcome of Gödel’s proof in more detail: 
 

Gödel proved that if any formal theory T that is adequate to include the theory of whole 
numbers is consistent, then T is incomplete. This means that there is a meaningful 
statement of number theory S, such that neither S nor not-S is provable within the 
theory. Now either S or not-S is true; there is then a true statement of number theory 
which is not provable and so not decidable. The price of consistency is incompleteness. 
(Grünfeld 1983, 45) 

 
Given the bad personal relation between Brouwer and Hilbert, this discovery was devastating. 
According to Roos, Hilbert never recovered from this blow (he died in 1943) (Roos 2010, 27). 
Hilbert’s proof theory wanted to show that all true mathematical statements could be 
incorporated in one system. However, Gödel demonstrated that no formal system can produce 
all true mathematical statements. In reality, Hilbert’s predicament was even worse, for Gödel 
soon realised that his method also showed that something like arithmetic cannot prove its own 
consistency. With this, Hilbert’s dogma was completely refuted. The expectation that there 
would be simple consistency proofs for complex theories faded completely (see Roos 2010, 
27). 
 
Hilbert’s rival won the day on these issues and subsequently, Paul Bernays, the co-worker of 
Hilbert, had to revert to finitistic methods in their proof theory (contained in Hilbert and 
Bernays 1934[1939]). 
 
Weyl declares: “It must have been hard on Hilbert, the axiomatist, to acknowledge that the 
insight of consistency is rather to be attained by intuitive reasoning which is based on evidence 
and not on axioms” (Weyl 1970, 269). 
 
Anticipating the abovementioned positive assessment of Cantor’s transfinite arithmetic by 
Hilbert as a paradise from which no one will drive us (Hilbert 1925, 170), Slater, in his 
Foreword to the 1922 edition of Principles of Mathematics, said: “But within this logical 
paradise lurked a serpent, and it revealed itself to Russell during the spring of 1901 when he 
was polishing his manuscript for publication” (Russell 1986[2010], xviii). 
 
According to Brouwer’s understanding of the history of mathematics, “classical logic was 
abstracted from the mathematics of finite sets and their subsets” (Weyl 1946, 9–10). The term 
“finite” is understood in the “precise sense that the members of such a set are explicitly 
exhibited one by one. Forgetful of this limited origin, one afterwards mistook that logic for 
something above and prior to all mathematics, and finally applied it, without justification, to 
the mathematics of infinite sets” (Weyl 1946, 10). 
 
Against this background we can now appreciate why Slater discerned a serpent behind the 
logical paradise, characterised by Weyl in terms of the title of this article when he declared: 
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This is the Fall and original sin of set theory 
for which it is justly punished by the antinomies 

(Weyl 1946, 10) 
 

Concluding Remarks 
The infinite divisibility of rational fractions follows from the part-whole relationship which is 
spatial in nature. The rational numbers imitate this feature, which is displayed in the fact that 
the numerical difference captured by rational intervals is also infinitely divisible. In the 
transition from integers (“whole” numbers) to fractions (“broken numbers”) the original 
meaning of number is deepened (“disclosed”) by pointing forwards (anticipating) an essential 
feature of space. But the infinite divisibility of a spatial continuum, in turn, points backward 
(retrocipates) to the primitive numerical meaning captured by mathematicians in terms of the 
successive infinite.  
 
The rational numbers represent, therefore, an anticipation to a retrocipation. Phrased slightly 
different we may now say that the numerical difference between any two rational numbers 
clearly imitates or anticipates the totality-character of continuity (compare the interval as a 
starting point for the intuitionist continuum). Bernays emphatically states that it is the totality-
character of the continuum that resists a complete arithmetisation of the continuum—keeping 
in mind that “the idea of the continuum is a geometrical idea expressed by Analysis in an 
arithmetical language” (Bernays 1976, 74).  
 
But since the different sizes of intervals within the continuum are themselves “infinitely 
divisible” (the denseness of the rational numbers), the mentioned anticipation to the totality-
character of continuity, due to the divisibility of such a whole and every one of its parts, 
immediately refers us back to the numerical aspect. This property of the rational numbers 
justifies us to speak about a semi-disclosed concept of number, guided by the infinite 
divisibility of a spatial continuum. It is only when the at once infinite is employed that we 
encounter the fully disclosed meaning of number, guided by the anticipatory hypothesis that 
we may work with infinite totalities in which all the parts are given as if they are present at 
once. The at once infinite is the first fully disclosed structural element of the numerical aspect, 
and it enables a disclosed handling of the real numbers. 
 
However, intuitionism had to “borrow” the totality-character of continuity from the spatial 
aspect, but immediately tried to conceal this debt by over-emphasising the part-element of the 
spatial whole-part relationship which, due to its feature of infinite divisibility, “convinced” 
them that in fact they have developed a theory of real numbers and the continuum that precedes 
the notion of space. 
 
Alas, exploring these alternative perspectives requires another article, exceeding the confines 
of the present one.  
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