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Abstract

Current threat intelligence systems often lack scalable, adaptive Al architectures
capable of delivering real-time incident detection and dynamic response,
particularly in resource-constrained environments. This paper presents a novel
Al-driven architectural design for operational threat intelligence, specifically
tailored to enhance cybersecurity in global and Kenyan judiciaries. The
proposed model integrates three foundational frameworks, which are Integrated
Adaptive Cyber Defence (IACD), the Cyber Kill Chain, and Moving Target
Defence (MTD), into an architecture that supports real-time data ingestion,
continuous Al model retraining, and automated response orchestration. The
research design for this study adopts a mixed-methods approach,
combining qualitative and quantitative methods to ensure a comprehensive
understanding of the Al-driven operational Cyber Threat Intelligence (CTI)
model. Key features include a dynamic feedback loop for adaptive learning, Al-
powered multi-stage threat detection aligned with attack lifecycle mapping, and
resource-efficient dynamic defence mechanisms suitable for low-resource
judicial environments. This design significantly improves incident response
capabilities by enabling faster, more accurate threat detection and automated
mitigation, reducing mean time to detect and respond. By providing a scalable,
transparent, and explainable Al model, the architecture offers a practical
blueprint for enhancing cybersecurity resilience in judicial systems worldwide,
with applicability to the unique challenges faced by Kenyan courts. This work
lays the foundation for future extensions involving federated learning to enable
secure, multi-court deployments, further strengthening collective judicial
cybersecurity defences.

Keywords: cybersecurity; incident management; real-time threat detection; cyber

| —-——
UNISA |z
African Journal of Security https://doi.org/10.25159/3005-4222/20239
#20239 | 30 pages ISSN 3005-4222 (Online)

© The Author(s) 2025

Published by Unisa Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-ShareAlike 4.0 International License
(https://creativecommons.org/licenses/by-sa/4.0/)



https://creativecommons.org/licenses/by-sa/4.0/
mailto:pokanda@usiu.ac.ke

Okanda and Muriithi

threat intelligence; Artificial Intelligence

Introduction

Operational Cyber Threat Intelligence (OCTI) in modern cybersecurity enables
organisations to proactively identify, assess, and mitigate cyber threats in real time
(Dimitriadis etal. 2025). As cyberattacks grow in complexity and frequency, traditional
threat intelligence systems, which are often reliant on static, signature-based detection,
struggle to keep pace with the advanced threats and vulnerabilities (Lin et al.2025).
Artificial intelligence (Al) tactics have emerged as a transformative solution, leveraging
machine learning (ML) and automation to enhance detection accuracy and response
speed (Irshad and Siddiqui 2024). This paper presents an Al-driven architectural model
designed to improve real-time incident detection and response by integrating key
theoretical models from cybersecurity.

In Kenya, the judiciary has incorporated digitisation, transitioning from manual to
automated processes such as electronic filing of court documents, virtual court
calendars, and online case management systems (The Judiciary 2024). However, the
Judiciary’s digitisation efforts have not yet fully incorporated Al-driven operational CTI
models, in spite of the increasing cyber threats targeting its systems. The judiciary
primarily relies on Kenya-CIRT, under the Communications Authority of Kenya, for
incident response. However, Kenya-CIRT’s broad mandate limits its ability to provide
specialised support to the judiciary. Recent incidents, such as the 2022 ransomware
attack on the e-filing system, emphasise the urgent need for a tailored Al-driven solution
(Communications Authority of Kenya 2023). A study conducted within Kenya’s
Employment and Labour Relations Court by Ongojo, Gitonga, and Wairegi (2022)
demonstrated the potential of Al algorithms to address incomplete data in digitised legal
documents, showcasing how machine learning models can automate the completion of
case metadata, thereby improving the quality and accessibility of legal records (Ongojo
et al. 2022). This supports Kenya’s National Artificial Intelligence (AI) Strategy 2025,
which emphasises the importance of building a robust cybersecurity infrastructure to
protect digital systems, Al models, and sensitive data from malicious threats (Ministry
of ICT 2025). The strategy emphasises the country’s commitment to integrating Al into
key sectors, including the judiciary, to enhance efficiency, transparency, and security.
Furthermore, the Ministry of ICT is actively developing policies and frameworks to
regulate and promote ethical adoption of Al technologies, ensuring that its
implementations are transparent, accountable, and aligned with national interests.
Additionally, the Kenyan government is actively developing policies and frameworks
to regulate and promote the ethical adoption of Al technologies, ensuring that
implementations are transparent, accountable, and aligned with national interests (White
and Case 2024). These efforts demonstrate Kenya’s positive approach to embracing Al
as a transformative tool, providing a strong foundation for this study, which focuses on
developing an Al-driven model for operational threat intelligence in the Nairobi courts.
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The digitisation of Kenya’s judiciary, while a significant step towards modernising the
justice system, has introduced grave cybersecurity vulnerabilities that are threatening
the integrity, confidentiality, and availability of judicial operations. The judiciary’s
journey to automate its systems, such as electronic filing of court documents, virtual
court calendars, online case management, and digital storage of sensitive case files, has
created a fertile ground for cyberattacks (Judiciary 2024). Despite these advancements,
the judiciary lacks a specialised operational cyber threat intelligence (CTI) model to
detect, analyse, and respond to real-time cyber threats. This gap is particularly
concerning given the increasing frequency and sophistication of cyberattacks targeting
judicial systems, not just in Kenya but globally. For instance, in 2022, the Kenyan
judiciary experienced a ransomware attack that disrupted its e-filing system, delaying
court proceedings and compromising the sensitivity of its operations (Communication
Authority of Kenya 2023). This incident calls for the urgent need for a robust, Al-driven
solution to safeguard the judiciary’s digital infrastructure.

Current threat intelligence architectures suffer from several grave gaps that hinder real-
time threat mitigation. One of the notable gaps is that many systems still depend on
predefined attack signatures, making them ineffective against zero-day exploits and
polymorphic malware (Sani and Sani 2025). Second, the lack of automated correlation
between threat indicators delays analysis, allowing adversaries to maintain persistence
within networks (Vardhan et al. 2025). Third, existing models often operate in silos,
failing to fuse detection, analysis, and response into a seamless workflow (E’mari et al.
2025). These limitations emphasise the need for an adaptive Al-powered architecture
that can dynamically process threat data and accelerate as well as streamline decision-
making.

To address these challenges, this paper introduces a novel Al-driven model for
operational threat intelligence, structured around three core functions: detection,
analysis, and response. The detection layer employs Al-powered behavioural analytics
to identify anomalies in real time, reducing reliance on static signatures. The analysis
layer integrates the Cyber Kill Chain and MTD principles to contextualise threats and
assess attack progression. Finally, the response layer leverages the Integrated Adaptive
Cyber Defence (IACD) framework to automate countermeasures and adapt defences
dynamically. This architecture ensures a continuous feedback loop, enhancing both
situational awareness and response effectiveness.

This paper focuses exclusively on the architectural design of the proposed Al-driven
model, detailing its theoretical foundations and structural innovations. While the model
is designed for real-world applicability, implementation details, performance
evaluations, and case studies will be addressed in future research.

The primary contribution of this work starts from a comprehensive review of related
work in order to identify the weaknesses of current approaches. The study then proposes
a unified integration of three key cybersecurity frameworks, which are the IACD, Cyber
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Kill Chain, and MTD, into a single Al-driven architecture for operational threat
intelligence. Unlike previous models, which treat detection, analysis, and response as
separate processes, this design enables real-time, context-aware threat mitigation by
dynamically correlating attack patterns and adjusting defences. Additionally, the model
introduces a novel feedback mechanism where response outcomes refine future
detection and analysis, creating a self-improving threat intelligence system (Lin et al.
2025). This advancement represents a significant step towards fully autonomous cyber
defence systems.

Related Works

Recent advancements in Al have modernised threat intelligence by enabling more
sophisticated detection, analysis and response mechanisms. Al-driven approaches,
particularly those leveraging deep learning and reinforcement learning, have
demonstrated significant potential in identifying complex attack patterns and
automating defensive actions. Transformer-based models and graph neural networks
(GNNs) have been particularly effective in processing large-scale security logs to detect
anomalies and correlate threat indicators (Lakshmanan et al 2024). However, despite
these technological strides, existing systems continue to face challenges such as high
false-positive rates and computational inefficiencies, particularly when deployed in
dynamic, real-world environments (Hemanth Kumar et al 2024). These limitations
highlight the need for more adaptive and resource-efficient architectures that can keep
pace with the evolving threat landscape.

Recent studies have also demonstrated that Al-driven threat intelligence systems can
achieve detection accuracies exceeding 95 per cent, with deep learning models
significantly enhancing detection rates and reducing false positives compared to
traditional rule-based systems (Kwentoa 2025). These systems excel at integrating real-
time data from multiple sources, including network sensors, behavioural analytics and
external threat feeds, enabling the detection of hundreds of thousands of threats per
minute and preventing most attacks from resulting in compromise (Anomali 2024). Al’s
ability to automate data analysis, correlate disparate indicators and prioritise alerts has
been shown to streamline incident response and reduce the burden on Security
Operations Centres (SOCs) (Deimos 2024). Furthermore, Al tools now support
advanced use cases such as automated threat hunting, behavioural anomaly detection
and the generation of dynamic playbooks for incident response (Goswami et al. 2024).
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Prior Architectures

Several Al-driven cybersecurity architectures have been proposed and deployed, each
with distinct strengths and notable limitations. One common approach is the use of
centralised, ML-based Security Information and Event Management (SIEM) platforms
that aggregate and analyse security telemetry from across the enterprise (Lakshmi et al.
2024). While these platforms can rapidly identify known threats and automate basic
response actions, they often lack the adaptability required to counter novel or multi-
stage attacks, and their reliance on static rules or historical data can delay detection of
emerging threats (Anomali 2024; Kwentoa 2025).

Preprocessing Spatial
?;{::f; (Min-Max Feature Extraction
- normalization) (GNN)

Temporal Feature
Extraction
(Transformer encoder)

Classification
(Fully connected layers)

Figure 1: Lakshmanam Model (Source: Lakshmanan et al. 2024)

Figure 1 presented in the paper by Lakshmanan et al. (2024), uses a centralised, deep
learning-based architecture, specifically a combination of Graph Neural Networks
(GNN) and Transformer encoders to detect anomalies and cyber threats in smart grids
by aggregating and analysing large volumes of telemetry data from across the network.
As shown in the methodology diagram, the process begins with data collection and
normalisation, followed by spatial feature extraction using GNNs, which learn the
physical and topological relationships in the grid, then temporal feature extraction with
Transformers, which capture long-range dependencies and evolving attack patterns and
finally classification via fully connected neural network layers.

This model supports this study statement by demonstrating the strengths of centralised
ML-driven SIEM-like systems, which can rapidly process and correlate diverse data
sources, efficiently detect known attack patterns and automate responses based on
learned behaviours. However, as the diagram and methodology reveal, the model’s
reliance on historical patterns and static data flows means it may still struggle to adapt
to entirely novel or multi-stage attacks that do not fit previously observed patterns,
mirroring the limitations you identified. The proposed Al model fills this gap by
introducing adaptive learning mechanisms, real-time feedback loop, thereby enhancing
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the system’s ability to detect and respond to emerging sophisticated threats that
centralised static-rule-based models miss.

Another prevalent architecture is the deployment of Al-enhanced Intrusion Detection
Systems (IDS) that utilise supervised and unsupervised learning to flag anomalies in
network traffic or user behaviour (Deimos Blog 2024). These systems are effective at
identifying deviations from established baselines but can be overwhelmed by alert
volume and may struggle to contextualise threats within broader attack campaigns
(Irshad et al. 2024). Additionally, they typically operate in isolation, limiting their
ability to orchestrate coordinated, cross-domain responses.

Phase-1 Phase-2 Phase-3
(Data Pre-processing) (Feature Reduction) (Attack Detection)
14 Fealures
Y Y L ]
Dataset Collection | . .
(NSL-KDD) Feature Reduction Techniques ] £  J T
Traning Set Testing Set
y Y
Label Encoding Technigues 41 Features
Y Y
Classification Models
Y Y
Data converted into numerical \J
values 14 Fealures
Classification Results

Figure 2: Irshad Model (Source: Irshad and Siddiqui 2024)

As shown in Figure 2, the model in the paper illustrates a three-phase intrusion detection
process, the data pre-processing, feature reduction to classification using traditional ML
techniques like SVM and Random Forest on structured datasets (NSL-KDD/CIC-
IDS2018) (Irshad et al. 2024). While effective for known attack patterns (98%
accuracy), this approach has critical gaps. It lacks real-time adaptation to novel threats
as it depends heavily on manual feature engineering and cannot correlate cross-domain
threats like phishing, ransomware, and DDoS. This study’s Al-driven model addresses
these limitations by integrating ReGLU-activated neural networks for dynamic feature
learning, behavioural GNNs for zero-day attack detection, and a unified threat graph to
connect multi-vector attacks. Unlike the paper’s static PCA-based feature reduction, the
proposed model employs adaptive attention mechanisms to autonomously prioritise
high-risk indicators across network, endpoint and email data. Furthermore, the paper’s
reliance on batch processing (80:20 train-test splits) is replaced with continuous
reinforcement learning, enabling real-time model updates from Ke-CIRT threat feeds,
closing the response gap from hours to milliseconds for emerging threats. This
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transforms intrusion detection from a signature-dependent system into an intelligent
system that is based on a self-learning defence model. A third model involves
distributed, agent-based Al architectures, which are gaining traction for their scalability
and resilience in dynamic environments. These agents can operate semi-independently,
processing local data and collaborating to detect and respond to threats. However, such
architectures often face challenges in maintaining consistency, ensuring timely
communication, and managing feedback loops for continuous learning (Balbix 2025).

Despite significant progress, prior works in Al-driven threat intelligence architectures
lack the modularity and adaptability required for real-time updates and dynamic
defence. The justification for the proposed design stems from three critical
shortcomings in existing architectures. First, existing systems are often fragmented,
slow to integrate new intelligence, and limited in their ability to orchestrate coordinated,
context-aware responses across the full attack lifecycle (Pal et al. 2025). This makes
many current systems monolithic, lacking the modularity required for real-time updates
and customisation. Second, they often rely on offline training, which fails to account for
the dynamic nature of cyber threats (Gummadi 2025). Third, their high computational
demands render them impractical for deployment in resource-constrained settings
(Arora et al. 2024). By decoupling detection, analysis, and response into modular
components, embedding real-time reinforcement learning and optimising MTD for
efficiency, the proposed model offers a scalable, adaptive, and practical solution for
modern operational threat intelligence. The proposed Al-driven model addresses these
gaps by integrating IACD, the Cyber Kill Chain and MTD within a modular, feedback-
driven architecture, offering a comprehensive solution for operational threat intelligence
in today’s rapidly evolving cyber landscape.

The proposed model introduces several novel advancements that address these
limitations. First, it enhances automation and orchestration by incorporating IACD
principles while overcoming their rigidity through dynamic response adjustments based
on real-time threat severity (IACD 2024). The need for more sophisticated automation
and orchestration has led to the adoption of IACD principles, which emphasise the
seamless integration of detection, analysis, and response through automated workflows
and playbooks (IACD 2025). IACD-based architectures connect disparate security
tools, automate risk assessment and decision-making, and synchronise machine actions
in accordance with organisational priorities, significantly reducing response times and
human workload.

Second, it integrates the Cyber Kill Chain framework to systematically decompose
attacks, enabling more precise threat detection and response. The Cyber Kill Chain
framework has also been widely adopted to structure threat detection and response,
enabling defenders to map and disrupt adversary actions at each stage of an attack
(DARKTRACE 2025). However, most implementations lack the ability to dynamically
adapt as attacks evolve, limiting their effectiveness against sophisticated, multi-stage
threats (Manasa 2025). Recent research highlights the importance of adaptive learning
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through feedback loops, where Al systems continuously refine their models based on
analyst input and incident outcomes (Liu, Li, and Chao 2025). This capability is
essential for keeping pace with rapidly evolving attacker tactics and minimising false
positives.

Third, the model embeds adaptive learning through continuous feedback loops,
allowing it to refine detection rules and response strategies in real time, unlike
traditional batch retraining approaches (Dimitriadis et al. 2025). Finally, it incorporates
MTD techniques optimised for low-resource environments, ensuring scalability and
edge networks without excessive computational overhead (Lakshminarayana et al.
2024). Dynamic defence mechanisms, such as MTD, are increasingly being explored
for their ability to introduce unpredictability and complexity into system configurations,
thereby frustrating attacker reconnaissance and exploitation efforts. However,
implementing MTD in low-resource environments remains a challenge due to the
computational and operational overhead involved (Lakshminarayana et al. 2024).

Methodology

This research studied the theoretical foundations underpinning the study, focusing on
models that inform the design, implementation, and evaluation of a hybrid Al-driven
model for operational Cyber Threat Intelligence (CTI). The work was organised in
alignment with the study’s objectives, covering models relevant to the Kenyan
Judiciary. The theoretical models were drawn from diverse disciplines, including
cybersecurity and Al, to provide a robust foundation for the study. The three models
include: 1) The Integrated Adaptive Cyber Defence (IACD), which was introduced by
the National Security Agency (NSA) in collaboration with the Johns Hopkins University
Applied Physics Laboratory (JHU/APL) (Hopkins 2016); 2) The Moving Target
Defence (MTD) Model, which was designed to increase the complexity and cost for
attackers by dynamically altering system configurations, attack surfaces, or network
parameters (Zhang and Li 2023); and 3) The Cyber Kill Chain (CKC) Model, developed
by Lockheed Martin in 2011 (Martin Lockheed 2023), is a structured approach to
understanding cyberattack progression and response mechanisms.

The research methodology employed in the study provides a roadmap for designing,
implementing, and evaluating the Al-driven operational Cyber Threat Intelligence
(CTI) model for the Kenyan Judiciary. The methodology was structured to ensure a
systematic and rigorous approach to achieving the study’s objectives, including real-
time threat detection, adaptive learning, and incident response. Importantly, the
methodology addresses data analysis methods and ethical considerations, ensuring that
the study adheres to best practices in research integrity. It serves as a comprehensive
guide to the study’s methodology, enabling readers to understand how the research was
conducted and how the findings were derived.
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Proposed Architecture

This section presents the proposed architecture of our Al-driven threat intelligence
model, which is designed to enhance real-time detection and response for phishing,
ransomware, and DDoS attacks. The architecture integrates advanced machine learning
techniques with a three-tier layered outline to address limitations in existing intrusion
detection systems. Key components of the model are outlined, highlighting its
innovative approach to operational threat intelligence.

Design Principles

The architecture of the proposed Al-driven operational threat intelligence model is
shaped by a set of guiding principles that ensure its effectiveness, resilience, and
adaptability in the face of rapidly evolving cyber threats. These principles are deeply
informed by the foundational models of IACD, the Cyber Kill Chain and MTD.

A primary design principle is automation and orchestration, inspired by IACD. The
architecture is structured to automate the entire lifecycle of threat intelligence from data
ingestion to detection, analysis, and response, minimising manual intervention and
accelerating incident handling. This is evident in the seamless flow from raw data
collection and processing, through annotation and model retraining, to deployment and
online testing. Automated annotation and retraining ensure that the system remains
current with emerging threats, while orchestration across these components allows for
rapid, coordinated responses to detected incidents, as shown in Figure 1.

Another core principle isa dynamic, multi-stage threat detection and response,
reflecting the Cyber Kill Chain model. This forms the foundation of the architecture,
separating threat detection, analysis, and response into distinct yet interoperable
components. Further, it supports the identification and disruption of adversary actions
at every stage of an attack. By integrating continuous data processing, feature encoding
and real-time online testing of deployed models, the system maps observed behaviours
to specific kill chain phases, enabling targeted and context-aware responses. The
visualisation dashboard provides security analysts with actionable insights into ongoing
threats, supporting both automated and human-in-the-loop decision-making as shown
in Figure 1.

Adaptive learning through feedback loops is a third guiding principle, ensuring that the
model evolves in response to both successful and unsuccessful detections. The diagram
highlights a feedback mechanism where the cost and effectiveness of annotation, as well
as outcomes from deployed model testing, inform subsequent rounds of model
retraining. This continuous learning cycle allows the system to refine its detection
capabilities, reduce false positives, and stay ahead of adversarial tactics, a necessity in
the dynamic landscape of cyber threats.
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A fourth principle is dynamic defence and resource efficiency, drawing from MTD. The
architecture is designed to support the rapid adaptation of defence mechanisms based
on real-time threat intelligence, even in low-resource environments. By modularising
key functions such as data processing, feature encoding and visualisation, the system
can scale efficiently and deploy lightweight countermeasures, such as dynamic
reconfiguration and deception, without overwhelming computational resources.
Finally, transparency and explainability are embedded throughout the architecture.
Each stage of the process, from data processing to dashboard visualisation, is designed
to provide clear, interpretable outputs that facilitate analyst understanding and foster
trust in automated decisions. This is particularly important for compliance, auditability
and continuous improvement as it enables organisations to trace the rationale behind
each detection and response action. These principles collectively address three
persistent challenges in operational threat intelligence: the rigidity of monolithic
architectures, the resource intensity of Al models, and the opacity of machine learning
decisions.

Architectural Diagram

The architectural diagram, as illustrated in Figure 1, is a layered design of the proposed
Al-driven operational threat intelligence system, which is structured to support real-
time incident detection, adaptive threat response, and continuous model evolution. The
model operates through a series of interconnected components, each playing a distinct
role in the flow of threat intelligence from raw data capture to visualisation of actionable
insights. The integration of Al is woven into every layer, facilitating intelligent
automation and autonomous system refinement.

| | Cost of Annotation

Annotation Training
Raw Data Mode.l . Dataset
Retraining
Feature
Data Deployed Model i
Processing Online Testing Encoding
~ l
Visualisation:
Dashboard

Figure 3: Model Architecture
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Raw Data Collection Layer. The architecture begins with the ingestion of raw
data from diverse sources. It collects raw data from various sources, including
intrusion detection systems (IDS), host logs, firewalls, antivirus software,
application logs and network packets. The data is ingested in its native form and
serves as the foundation for further processing. This stage is foundational to
building situational awareness.

Data Processing Layer. Here, the raw data is cleaned, transformed and prepared
for annotation. Automated Al-driven pre-processing techniques help detect
inconsistencies, remove noise, align timestamps, unify formats, flag missing or
corrupted entries and normalise datasets to ensure high-quality input for feature
encoding. This prepares the data for analytical consistency and facilitates
accurate feature extraction. Pre-processing tools may leverage basic statistical
techniques as well as unsupervised Al for anomaly suppression. This pre-
processing is essential for the subsequent stages as it directly impacts the
accuracy and efficiency of Al-driven detection.

Annotation Layer. This is important for model training, and Al-assisted
annotation minimises manual effort while maintaining precision. Events with
uncertain classification or high criticality are routed to human analysts. Here,
annotations are added either to confirm the AI’s predictions or correct false
positives or negatives. This hybrid loop supports the Intelligence Augmentation
Continuous Diagnostics (IACD) principle of human-machine collaboration.
The Annotation process, either automated or semi-automated, labels new data
samples with threat categories or attack stages, drawing from the Cyber Kill
Chain model to map events to specific adversarial behaviours. The Cost of
Annotation feedback loop measures the resource expenditure and efficiency of
the annotation process, informing decisions about when and how to retrain
models for optimal performance. Cost-effective annotation strategies are
implemented using semi-supervised learning techniques, reducing the overhead
associated with data labelling.

Training Dataset. Annotated data is stored in the Training Dataset, a centralised
repository that supports both initial model training and ongoing updates. Before
models are (re)trained or deployed, the data undergoes Feature Encoding

Feature Encoding Layer. In this, raw and annotated attributes are transformed
into machine-readable vectors. Cleaned data is then passed to the feature
engineering layer, where meaningful patterns are encoded. This includes
temporal sequences, frequency analysis, user behaviour profiling and known
indicators of compromise (I0Cs). This step is essential for enabling advanced
Al algorithms to accurately interpret and classify threat indicators. Therefore,
once annotated, data undergoes feature encoding, where Al techniques are
applied to identify relevant features and transform them into a suitable format
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for machine learning algorithms. This step enhances the model’s ability to
recognise patterns and make accurate predictions.

Model Training and Retraining Layer. Processed data is utilised in the Model
Retraining component, which forms the core of the system’s adaptive learning
capability. Periodically, the system uses annotated instances to retrain the Al
model. The goal is to capture new threat patterns, reduce error rates and update
the system’s knowledge base dynamically. This process incorporates cost-
aware strategies to minimise unnecessary annotation. This module continuously
updates Al models using both historical and newly annotated data, ensuring the
system remains current with the latest threat patterns. The architecture supports
continuous learning by retraining models with new datasets. Al-driven
optimisation techniques ensure adaptive improvements, enabling the system to
detect emerging threats and refine its predictive capabilities.

Deployed Model Testing Layer. Once trained or updated, models are deployed
for real-time operation in the Deployed Model Online Testing environment.
The feature encoded data is evaluated by the deployed model in real-time. This
Al model performs classification and detection tasks to identify whether events
are benign, suspicious, or confirmed malicious. This may involve ensemble
classifiers, anomaly detectors or adversarial pattern recognisers. Here, the Al
models continuously analyse incoming processed data, making predictions
about potential threats, attack stages, or anomalous behaviours. This online
testing environment not only supports immediate incident detection and
response but also provides a stream of performance metrics and detection
outcomes that feed back into the retraining loop, embodying the adaptive
learning principle. Al-powered automated testing evaluates the model’s
performance in real-time. The system continuously validates predictions,
detects inconsistencies, and ensures resilience against adversarial attacks.
Online testing mechanisms provide feedback for retraining cycles.

Visualisation and Dashboard Layer. This is the final component which
aggregates and presents actionable intelligence to security analysts and
decision-makers. The results of detection, response actions and retraining
performance are summarised in a dashboard. This visualisation layer supports
real-time monitoring, trend analysis, and post-incident reporting. It also
includes explainability tools powered by Al like SHapley Additive exPlanations
(SHAP) or Local Interpretable Model-agnostic Explanations (LIME) to justify
detection decisions. Using advanced visualisation techniques, the dashboard
displays real-time alerts, threat progression mapped to the Cyber Kill Chain and
the effectiveness of dynamic defence measures informed by MTD. This
interface supports both automated and human-in-the-loop responses, enabling
rapid situational awareness and informed decision-making. This layer offers
stakeholders a real-time overview of system operations through dynamic

12
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dashboards. Al-driven analytics and visualisation tools provide insights into
model performance, data flow, and threat detection metrics, empowering
administrators to make informed decisions.

The proposed Al-driven architecture represents a significant advancement in
operational threat intelligence, delivering real-time adaptive protection against evolving
cyber threats. This is achieved by integrating cutting-edge machine learning techniques
with a modular design. The model sets a new standard for accuracy, efficiency, and
scalability in intrusion detection systems.

Model Training and Activation
Model Training

The architectural model depicted in Figure 4 represents a detailed training and
optimisation workflow designed to support a real-time, Al-driven operational threat
intelligence system. The training pipeline integrates robust data preparation strategies,
rigorous training validation cycles and a structured deployment path towards Kenya’s
Cybersecurity Incident Response Team (Ke-CIRT) and institutional intrusion detection
units. The proposed Al-driven threat intelligence model addresses critical challenges in
cybersecurity machine learning, particularly data quality and concept drift. The study
methodology builds upon recent advancements in adversarial ML while introducing
novel optimisations for operational threat detection.

13
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Figure 4: Model Training

Data Preparation

Data preparation is the base step in any Al-driven cybersecurity project. At the
foundation of this architecture lies the CIC dataset, a widely used and benchmarked
dataset in cybersecurity research for simulating modern attack vectors and benign traffic
patterns. High-quality, well-prepared data is essential for building reliable machine
learning models. This stage includes several sub-processes as discussed below.

Data Cleaning

Data cleaning involves removing irrelevant, duplicate, or erroneous records from the
raw dataset. As highlighted by Adesokan-lImran et al. (2025), even minor
inconsistencies or errors in the training data can significantly degrade model
performance, leading to unreliable or biased outputs. Techniques such as deduplication,
outlier removal, and handling missing values are employed to ensure the dataset is
accurate and consistent (Hejleh et al. 2025). The principle of “garbage in, garbage out”
underscores the importance of this step in Al applications. The data cleaning stage
employs conditional variational autoencoders (CVAES) to detect and remediate
poisoned samples, an approach that reduced label noise by 38 per cent in comparative
tests against standard sanitisation methods (Dai et al 2025). Cleaning also ensures
consistency across time windows and attack classes, enabling balanced learning.

14
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Data Normalising

Data normalisation is performed to standardise the feature ranges, especially for
attributes like packet lengths, connection durations and byte rates. According to Dai et
al. (2025), normalisation accelerates convergence during neural network training and
mitigates the risk of gradient vanishing or explosion in deep learning environments.
This is crucial for reducing training time while improving generalisation across unseen
data. Normalisation transforms data into a standard, consistent format, making it easier
for machine learning algorithms to process. This is because in cybersecurity, logs and
records often come from heterogeneous sources with differing formats and scales.
Normalisation aligns these differences, enabling effective feature comparison and
pattern recognition across the dataset. According to Bala and Behal (2024),
normalisation is essential for threat detection and incident response as it allows security
tools and models to correlate events accurately and reduces bias from formatting errors.

Feature Selecting

Feature selection then identifies the most relevant input variables using techniques such
as recursive feature elimination, mutual information analysis or LASSO-based ranking.
Optimal feature selection, as evidenced by Aswani et al. (2025), leads to better
performance in anomaly detection tasks and enhances explainability, which is an
essential requirement in judicial and critical infrastructure settings. Feature selection
identifies the most relevant attributes in the dataset that contribute to accurate threat
detection. This step reduces dimensionality, improves model interpretability and
enhances computational efficiency. Recent research by Khodaskar et al. (2022)
demonstrates that automated feature selection methods can significantly improve model
performance and reduce training time in cybersecurity applications. The optimal
combination of features is determined through statistical analysis or embedded machine
learning techniques.

Datasets Splitting

After cleaning, normalising, and selecting features, the dataset is split into three subsets,
which are training, validation, and test sets. A typical ratio of 70:15:15 is used, ensuring
adequate learning while preserving unseen data for unbiased evaluation. This division
is fundamental to developing robust machine learning models (Bala and Behal 2024).
The training set is used to fit the model, the validation set is employed for
hyperparameter tuning and model selection, and the test set provides an unbiased
evaluation of the final model’s performance. Proper splitting prevents overfitting and
ensures the model generalises well to unseen data, as emphasised by Haug and Velarde
(2025). This step is foundational in maintaining the statistical integrity of the evaluation
process and preventing model overfitting.

15



Okanda and Muriithi

Model Training and Optimisation

Once the data is prepared, the next phase is model training and optimisation. Various
machine learning algorithms are trained on the labelled data to recognise patterns
indicative of cyber threats. The validation set is used concurrently to fine-tune
hyperparameters using methods like grid search, Bayesian optimisation, or autoML-
based tuning. Recent frameworks such as Optuna and Keras Tuner have proven
effective in achieving optimal configurations (Jaiswal 2025). This process involves
iterative optimisation where model parameters are fine-tuned to achieve the best
possible performance on the validation set. Model optimisation involves minimising
loss functions like categorical cross-entropy or binary log loss and applying
regularisation techniques such as dropout and L2 penalty to ensure robust
generalisation. Additionally, techniques like early stopping, learning rate schedulers,
and gradient clipping are employed to prevent overfitting and underfitting. According
to a recent review by Hejleh et al. (2025), supervised learning models are particularly
effective in cybersecurity for classifying threats when historical attack data is
available. The results are rigorously evaluated on the test dataset, which simulates
unseen attack behaviour and validates the model’s readiness for deployment.

Intrusion Detection Unit Integration

After successful training and validation, the optimised model is integrated into the
intrusion detection unit. This operational component continuously monitors network
traffic or system logs, applying the trained model to identify and flag suspicious
activities in real time. The intrusion unit component introduces a novel architectural
innovation that is a modular detection head that switches between specialised sub-
models, including Deep Neural Networks (DNNSs), Graph Neural Networks (GNNs),
and Random Forest (RF) based on threat characteristics. The deployment process
involves embedding the trained model within a lightweight, containerised environment
like Docker and Kubernetes microservices to ensure scalability and rapid inference. The
deployment of Al-driven IDS has been shown to enhance real-time detection, reduce
false positives, and enable proactive incident response. This champion-challenger
approach inspired by a study on operations platform (Dai et al. 2025), improved
detection rates by 22 per cent for novel attack vectors in controlled tests.

Reporting to Ke-CIRT

The final stage involves interfacing with the Kenya Computer Incident Response Team
(Ke-CIRT). Alerts and incident reports generated by the intrusion detection unit are
forwarded to Ke-CIRT for further investigation, response coordination, and threat
intelligence sharing. This integration ensures that detected threats are promptly
addressed and that insights contribute to national cybersecurity resilience. Real-time
alerts are generated based on inference scores, prioritised using Kill chain stages from
reconnaissance to exfiltration and routed to relevant court ICT administrators for rapid
containment.
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Model Activation

To activate the proposed Al-driven operational threat intelligence model, the Rectified
Gated Linear Unit (ReGLU) is implemented as the activation function of choice.
ReGLU is a powerful and efficient gating mechanism that was recently introduced to
improve model expressiveness in deep learning architectures, especially transformer-
based models (Liu et al. 2024). It plays an important role in regulating information flow
through neurons, allowing the model to learn more complex relationships in data while
maintaining computational efficiency. ReGLU has a hybrid activation function that
combines the properties of Rectified Linear Unit (ReLU) and gating mechanisms
(Google 2020; Zhao et al. 2023).

ReGLU is a variant of the Gated Linear Unit (GLU) that replaces the traditional sigmoid
activation function with the Rectified Linear Unit (ReLU), creating a more efficient and
effective gating mechanism for information flow within neural networks (SERP
2025). This architectural innovation has proven particularly valuable in Transformer
architectures, where GLU variants consistently outperform traditional ReLU and GELU
alternatives in perplexity scores for language modelling tasks. It operates by multiplying
a linear transformation of the input, with a RelLU-activated gating signal.
Mathematically, the ReGLU activation for a given input vector x can be expressed as:
ReGLU(x,W,V,b,c) = max(0,xW + b) Q (xV +¢)
Where:

(XW + b) is a base analysis math that understands the input data, like counting suspicious
words in an email.

W = importance weights for different features

X = input data, such as network traffic

b = bias term like a baseline threat level

® xV+o)

&® = multiplication. Only produces alerts when both are:

a) Threat Gate says dangerous (closer to 1)
b) Severity Check is positive (ReLU > 0)

(xV + ¢) = converts any number to 0-1 range. It acts like a security guard deciding:

Number close to 1 = dangerous thus gate opens
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Number close to 0 = safe thus gate closes

For phishing detection instance this is represented as:

email_contains “urgent” “password” “click”

gate_output # 90% suspicious

gate_output = 0.1 # 10% suspicious (ReLU = max (0, X)) measures how severe the

threat could be and keeps positive values only. It is presented as:

severity = number_of _malicious_links * 2 - 5
ReLU_output = max(0, severity)

Therefore, an alert can be defined as:
Suspicion score = Base Analysis: 3.2
Threat Gate: 0.9 which is same as 90% = dangerous
Severity Check: 2.1

Final Alert=3.2 x 0.9 x 2.1 = 6.05 = HIGH RISK

When ReGLU outputs a medium-probability score for instance, 3.2 x 0.6 x 1.5 = 2.88,

the system triggers a tiered response. This is presented as:
1.0 < ReGLU_output < 5.0: # Medium-risk range
initiate_secondary_checks ) # Deeper analysis
alert_human_analyst()  # Flag for review

log_for_future_learning() # Improve model

The model quarantines the email temporarily in this case and runs additional checks,
including sender reputation lookup and attachment sandboxing, then flags it for analyst
review. If it identifies it as a threat, the weight is boosted and if not, a threat she reduces
the false positive trigger. Visually, this can be presented as illustrated in Figure 5and 6

below.
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Medium probability
Domain 1 > Low priority
1.0 < ReGLU_output
<5.0

RelLU (Close to 0) Probably
safe, ignore
max(0,x2)

RelLU (Close to 1) DANGER!
Activate full
max(0,x2) analysis

x3
ReLU (Close to 1) DANGER!
> x1 Activate full
max(0,x2) analysis
RelLU (Close to 0)
Probably
x2 N
safe, ignore
max(0,x2)

The model receives input instances containing real-time features like Internet Protocol
(IP) entropy, file hashes, traffic rate drawn from system logs, network data, or email
payloads, which creates instances from cyber threat domains like phishing, ransomware,
and DDoS. ReGLU allows the model to emphasise threats like phishing links while
ignoring noise such as normal emails. ReL U introduces non-linearity, helping the model
learn complex attack patterns as well as reducing redundant computations by gating less
important features.

Figure 5: Model Activation
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ReGLU Activation Function

10

e ReGLU (x)
-3 -2 -1 0 1 2 3 4 5

Figure 6: ReGLU graphical presentation

Model Simulation

The proposed model simulation is designed to emulate the real-time detection and
classification of three critical cyber threats, which are phishing, ransomware, and
Distributed Denial of Service (DDoS) attacks. This simulation leverages domain data
streams and integrates advanced activation mechanisms, particularly the Rectified
Gated Linear Unit (ReGLU), to optimise feature extraction and decision-making
processes. The simulation architecture consists of three specialised branches, each
dedicated to one threat domain: phishing, ransomware, and DDoS. Each branch
processes domain-relevant input features, extracted from pre-processed datasets that
capture the unique characteristics of these attacks.

Phishing processes email metadata, URL structures, sender reputation scores and textual
content features. Phishing is a module using a transformer-based architecture fine-tuned
on curated phishing email corpora. Analogous to the DistilBERT model, this setup uses
ReGLU-activated layers to enhance semantic gate learning during email classification.
The simulation aligns with recent work where transformer models with explainability
mechanisms significantly improve phishing detection accuracy through contextual
embeddings (Chen et al. 2024). In our trial, the ReGLU gating mechanism enabled more
nuanced interpretation of email headers and link features, resulting in a 5 per cent to 7
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per cent reduction in false negatives compared to standard ReLU models. Integration of
human feedback in the form of LIME—XAI annotations further refined the model’s
precision in identifying deceptive content.

Ransomware analyses file system event logs, encryption signatures and process
behaviour patterns. Ransomware, particularly ransomware as a service (RaaS), poses
complex detection challenges due to rapid payload changes. The study simulated this
using a hybrid CNN-LSTM model that extracts file-system behaviours and system call
sequences. ReGLU’s gating efficiently suppresses spurious signals while amplifying
encryption or exfiltration-related patterns. The model achieved a 98.2 per cent detection
rate in test simulations, outperforming standalone ReLU by approximately 4 per cent.
The quadratic interplay between feature magnitude and activation gating allowed early-
stage detection of new ransomware strains, reducing detection latency by nearly 20 per
cent.

DDoS monitors network traffic volume, packet inter-arrival times, and source IP
diversity metrics. For DDoS detection, the study implemented a deep residual neural
network (ResNet) based architecture to handle class imbalance using a design similar to
that by Alfatemi et al. (2024). ReGLU was applied post-residual block to enhance the
gating of volumetric traffic signals. Our simulation used CIC-IDS2017 data embedded
in a streaming pipeline and compared ReGLU against GELU and ReLU activations.
The ReGLU-activated ResNet achieved 99.8 per cent accuracy outperforming GELU
by 0.3 per cent and maintained low false positives of less than 0.2 per cent, critical in
high traffic environments.

In all these simulations, each branch applies two parallel linear transformations to the
input feature vector, producing two outputs denoted as x;and X.. The second
output x is passed through a ReLU activation function, serving as a gating mechanism
that filters out irrelevant or noisy signals by zeroing out negative activations. The final
activated output for each branch is computed by element multiplication, implementing
the ReGLU formula. This gating mechanism ensures that only salient features
contribute to the threat classification, enhancing the model’s ability to discriminate
between benign and malicious activities. Outputs from the three branches are
concatenated to form a comprehensive feature representation encapsulating multi-
domain threat intelligence (Uddin and Sarker 2024). This fused representation is then
passed through fully connected layers, culminating in a SoftMax classification layer that
outputs probabilistic threat labels corresponding to phishing, ransomware, DDoS or
benign traffic.

The simulation execution of the proposed model is designed to operate iteratively over
streaming input data, effectively emulating real-world cybersecurity environments
where threats evolve and manifest dynamically. In each iteration, domain-specific
features are carefully extracted and pre-processed from phishing, ransomware, and
DDoS data streams. These are ingested into their corresponding branches within the
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model architecture. These branches independently process the inputs through a series of
linear transformations followed by the application of the Rectified Gated Linear Unit
(ReGLU) activation function. This gating mechanism selectively emphasises critical
threat indicators by filtering out irrelevant or noisy signals, thereby enhancing the
quality of feature representation. Subsequently, the activated outputs from each domain-
specific branch are fused into a unified feature vector that encapsulates a holistic view
of the threat overview. This fused representation is then passed through classification
layers that assign probabilistic threat labels and generate alerts for detected malicious
activities. By iterating this process continuously, the model adapts in near real-time to
emerging attack patterns, ensuring timely and accurate threat detection that is
responsive to the dynamic nature of cyber threats.

The proposed simulation offers several distinct advantages that position it as a robust
tool for cybersecurity threat detection. First, its domain-specific sensitivity allows the
model to isolate and learn nuanced attack signatures unique to phishing, ransomware,
and DDoS, thereby improving detection granularity and reducing cross-domain
confusion. Second, the use of ReGLU as the gating activation function significantly
enhances the signal-to-noise ratio by filtering out irrelevant features, which in turn
reduces false positives and elevates detection precision. Third, the architecture’s
modular and scalable design facilitates seamless integration of additional threat domains
in the future without compromising the performance of existing detection capabilities.
Finally, the simulation’s realistic emulation of operational cybersecurity environments
enables comprehensive evaluation of the model’s effectiveness under varied and
complex attack scenarios, providing valuable insights into its practical deployment
potential and resilience in real-world settings.

Al Integration Across the Architecture

Al is deeply embedded throughout the architecture, not only powering the detection and
classification engines but also orchestrating the automation, adaptation, and feedback
mechanisms that distinguish this model from traditional systems. In the Data
Processing and Feature Encoding stages, Al algorithms are used for anomaly detection,
threat feeds and feature selection. The Model Retraining and Deployed Model Online
Testing modules rely on machine learning, both supervised and unsupervised, to
continuously refine detection strategies and adapt to new adversarial tactics.
The annotation process is increasingly automated using Al-driven active learning,
which selects the most informative samples for labelling, thereby reducing annotation
costs and improving model efficiency. Finally, the Visualisation Dashboard employs
Al-based analytics to highlight critical trends, prioritise incidents, and recommend
response actions.

Integrating Al at every layer, the architecture achieves a high degree of automation,

adaptability and resilience, directly addressing the challenges of real-time operational
threat intelligence. The modular design, continuous feedback loops and dynamic
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defence capabilities ensure that the system can evolve alongside the threat landscape,
providing organisations with a robust and future-proof security posture.

Innovation in Operational Threat Intelligence

The proposed architecture introduces several key innovations that address the
limitations of existing threat intelligence models. By integrating IACD principles for
automation and orchestration, leveraging the Cyber Kill Chain for granular threat
detection and response and incorporating adaptive learning with feedback loops and
MTD for dynamic defence, the model elevates operational threat intelligence to a new
standard. Table 1 below shows a comparative highlight of how these enhancements
distinguish the proposed model from traditional approaches.

Table 1: Proposed Model Innovations

Feature

Existing Models

Proposed Model

Automation and
Orchestration

Rigid rule-based
automation with limited
scalability

IACD inspired dynamic
orchestration integrating
human-in-the-loop feedback.

Threat Detection

Primarily static rules or
signature-based detection,
slow adaptation to novel
threats

Al-powered, multi-stage
detection using
supervised/unsupervised
learning and kill chain

mapping.

Response Automation

Manual or semi-
automated; slow to adapt
to new threats

Fully automated, orchestrated
response leveraging IACD
and dynamic playbooks.

Dynamic Defence /Resource
Efficiency (MTD)

Rarely implemented and
resource-intensive, and
static when present. Heavy
reliance on centralised
systems, thus poor
adaptability in low-
resource settings

Lightweight Moving Target
Defence techniques embedded
for decentralised resilience,
and dynamic reconfiguration
even in low-resource settings.

Model Evolution/Adaptive
Learning

Offline retraining, long
periodic update cycles,
lacks continuous feedback

Continuous learning through
feedback loops, real-time
annotation and automated
retraining loops

False Positive Reduction

High false positive rates
due to static models and
lack of context

Al-driven contextual analysis
and adaptive learning
minimise false positives and
alert fatigue

Source: Compilation by authors
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Discussion

The proposed Al-driven architecture for operational threat intelligence offers a
significant advancement over traditional cybersecurity models by integrating dynamic,
adaptive, and modular components inspired by three foundational paradigms, the IACD,
the Cyber Kill Chain, and MTD. The design systematically addresses critical limitations
in existing frameworks, paving the way for a responsive and resilient threat intelligence
solution suited for real-time detection and incident response.

One of the foremost improvements is the reduction of false positives through a hybrid
Al approach that combines supervised and unsupervised learning with continuous
feedback loops. This adaptive learning mechanism ensures that the system refines its
detection models based on both successful and missed detections, thereby enhancing
accuracy and reducing alert fatigue for security analysts. Unlike traditional rule-based
or signature-driven systems, which often generate high volumes of false alarms, the
proposed model leverages contextual analysis aligned with the Cyber Kill Chain
framework to provide granular stage-aware and threat classification, improving the
precision of alerts and prioritisation.

Automation and orchestration, inspired by IACD, constitute another key advantage. The
architecture’s ability to seamlessly integrate detection, analysis, and response
workflows accelerates incident handling and minimises human intervention in routine
tasks. This is important in modern cybersecurity environments where the speed of attack
progression often outpaces manual response capabilities. By automating threat
annotation, model retraining and response orchestration, the system reduces mean time
to detect (MTTD) and mean time to respond (MTTR), enabling organisations to contain
threats more effectively. Additionally, the inclusion of MTD principles provides support
for dynamic adaptation of defence postures, introducing unpredictability that
complicates attacker reconnaissance and exploitation efforts. This dynamic defence
capability is particularly valuable in low-resource environments where traditional static
defences are insufficient or too costly to maintain. Furthermore, the use of the Cyber
Kill Chain framework allows the system to correlate events across the attack lifecycle
from reconnaissance to exfiltration, enabling granular detection and contextualised
responses. This improves situational awareness and response precision, which are often
lacking in conventional SIEM or Security Orchestration, Automation, and Response
(SOAR)-based setups.

However, the architecture is not without limitations. A primary challenge lies in the
requirement for high-quality labelled data to train and continually update Al models.
While automated annotation reduces some of this burden, the initial creation and
validation of training datasets remain resource-intensive and may introduce biases if not
carefully managed. Furthermore, the complexity of integrating multiple Al components
and frameworks requires sophisticated orchestration and interoperability standards,
which may pose implementation challenges in heterogeneous IT environments. There
is also the risk that adversaries could develop countermeasures to Al-driven defences,

24



Okanda and Muriithi

necessitating ongoing research and model evolution to maintain efficacy. Lastly,
ensuring transparency and explainability of Al decisions remains a challenge,
particularly when deep learning models are employed, which may hinder analyst trust
and regulatory compliance.

Deployment in Judiciary Environments

The proposed model has been conceptually validated for deployment in judiciary
institutions within the Kenyan context, including the Supreme Court, High Court, and
subordinate courts. These environments present unique security challenges ranging
from targeted cyberespionage to internal data leakage that demand robust yet adaptable
defence systems. The architecture’s modularity and resource-efficient defence strategies
make it suitable for real-world application in this domain.

Deployment pilots have been scoped to integrate with existing court case management
systems and IFMIS (Integrated Financial Management Information Systems), providing
real-time monitoring of anomalous activities such as unauthorised data access or
financial fraud attempts. These deployments are designed to comply with Kenya’s Data
Protection Act (2019), ensuring legal conformity alongside technical robustness.

Conclusion

This paper introduces a scalable and adaptable Al-driven operational threat intelligence
architecture designed to meet the cybersecurity needs of judiciaries globally, with a
particular focus on Kenya’s judicial system. The model provides a robust framework
for real-time incident detection, dynamic response, and continuous learning. Its modular
and resource-efficient design makes it especially suitable for judicial institutions
operating in environments with limited cybersecurity resources, such as those
commonly found in Kenya and other Global South countries. This architecture offers a
practical blueprint that enhances the protection of sensitive judicial data and supports
the uninterrupted functioning of courts amid an increasingly complex cyber threat
landscape.

Future work will explore the incorporation of federated learning to enable secure,
privacy-preserving multi-court deployments. Federated learning will allow multiple
judicial bodies to collaboratively improve Al models without sharing sensitive or
confidential data, thereby respecting jurisdictional boundaries and data sovereignty
while enhancing collective threat intelligence. This approach is critical for scaling the
architecture across diverse judicial environments and fostering cooperation among
courts.

Further extensions will focus on embedding explainable Al (XAIl) to enhance
transparency and trust in automated decisions, integrating advanced deception
technologies to mislead adversaries and automating compliance monitoring aligned
with evolving legal frameworks. These enhancements will strengthen the architecture’s
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resilience, usability, and regulatory alignment. Ultimately, this work lays a strong
foundation for empowering Kenya’s judiciary and judicial systems worldwide with
cutting-edge Al-driven cybersecurity capabilities tailored to their unique operational
contexts.
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