Peculiar Size Effects in Nanoscaled Systems

Authors

DOI:

https://doi.org/10.25159/NanoHorizons.9d53e2220e3

Keywords:

nanoscale, nanomaterials, size effects, surface effects, surface coordination, quantum confinement, electrons or phonons confinement, surface-to-volume ratio

Abstract

In this minireview, we intend to shed light on relatively recent examples related to the size and shape effects on materials at the nanoscale and their usage to test a set of quantum mechanics governed phenomena.

Metrics

Metrics Loading ...

Author Biographies

Malek Maaza, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

M Henini, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

School of Physics and Astronomy, University of Nottingham, United-Kingdom.

F Ezema, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa

Department of Physics, University of Nigeria

E Manikandan, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

 Physics Department, Thiruvalluvar University, India.

J Kennedy

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa

National Isotope Centre, GNS Science, New Zealand.

K Bouziane, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

2 Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

International University of Rabat, Morocco.

M Chaker, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

National Institute for Scientific Research, Energy and Materials, Canada.

A Gibaud, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

Le Mans University, France.

A. K. F. Haque, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

Department of Physics, University of Rajshahi, Bangladesh

Z Nuru, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

Department of Physics, Adigrat University, Ethiopia.

I. Ahmad, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa

National Centre for Physics, Pakistan.

R Obodo, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

Department of Physics, University of Nigeria.

M Akbari, University of South Africa [https://ror.org/048cwvf49]

UNESCO–Unisa Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network, iThemba Labs, National Research Foundation, South Africa.

References

C. N. R. Rao, and K. Biswas, “Characterization of nanomaterials by physical methods,” Annu. Rev. Anal. Chem, vol. 2, no. 1, pp. 435–462, 2009, doi: 10.1146/annurev-anchem-060908-155236. DOI: https://doi.org/10.1146/annurev-anchem-060908-155236

A. Santamaria, “Historical overview of nanotechnology and nanotoxicology,” in Methods in Molecular Biology: Nanotoxicity, J. Reineke, Ed., Totowa, NJ, United States: Humana, 2012, pp: 1–12, doi: 10.1007/978-1-62703-002-1_1. DOI: https://doi.org/10.1007/978-1-62703-002-1_1

N. Taniguchi, “On the basic concept of nanotechnology,” in Proc. of the Int. Conf. on Prod. Eng., 1974, pp. 18–23.

R. Feynman, “There’s plenty of room at the bottom,” Eng. Sci., vol. 23, pp. 22–36, 1960.

N. Baig, I. Kammakakam, and W. Falath, “Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges,” Mater. Adv., vol. 2, pp. 1821–1871, 2021, doi: 10.1039/D0MA00807A. DOI: https://doi.org/10.1039/D0MA00807A

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer, “Engineering precision nanoparticles for drug delivery,” Nat. Rev. Drug. Discov., vol. 20, no. 2, pp. 101–124, 2021, doi: 10.1038/s41573-020-0090-8. DOI: https://doi.org/10.1038/s41573-020-0090-8

M. Jeyaraj, S. Gurunathan, M. Qasim, M. H. Kang, and J. H. Kim, “A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles,” J. Nanomater., vol. 9, p. 1719, 2019, doi: 10.3390/nano9121719. DOI: https://doi.org/10.3390/nano9121719

C. M. Lieber, and C. C. Chen, “Solid state physics—Advances in research and applications, AP, vol. 48, pp. 109–148, 1994, doi: 10.1016/S0081-1947(08)60578-0. DOI: https://doi.org/10.1016/S0081-1947(08)60578-0

J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein J. Nanotechnol., vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98. DOI: https://doi.org/10.3762/bjnano.9.98

H. Ago, Frontiers of Graphene and Carbon Nanotubes, Tokyo, Japan: Springer, 2015, doi: 10.1007/978-4-431-55372-4_1. DOI: https://doi.org/10.1007/978-4-431-55372-4_1

Y. C. Kong, D. P. Yu, B. Zhang, B., W. Fang, and Q. Feng, “Ultraviolet-emitting ZnO, nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett., vol. 78, no. 4, p. 407, 2001, doi: 10.1063/1.1342050. DOI: https://doi.org/10.1063/1.1342050

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett., vol. 82, no. 11, p. 2278, 1999, doi: 10.1103/PhysRevLett.82.2278. DOI: https://doi.org/10.1103/PhysRevLett.82.2278

L. Guo, et al., “Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles,” Chem. Mater., vol. 12, P. 2268, 2000, doi: 10.1021/cm9907817. DOI: https://doi.org/10.1021/cm9907817

B. D. Ngom, T. Mpahane, E. Manikandan, and M. Maaza, “ZnO nano-discs by lyophilization process: Size effects on their intrinsic luminescence,” J. Alloys Compd., vol. 656, pp. 758–763, 2016, doi: 10.1016/j.jallcom.2015.09.230. DOI: https://doi.org/10.1016/j.jallcom.2015.09.230

X. Y. Kong, and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,” Nano Lett., vol. 3, no. 12, p. 1625, 2003, doi: 10.1021/nl034463p. DOI: https://doi.org/10.1021/nl034463p

M. Joseph, H. Tabata, and T. Kawai, “P-type electrical conduction in ZnO thin films by Ga and N cooping,” Jpn J. Appl. Phys. Part 2 Lett., vol. 38, p. L1205, 1999, doi: 10.1143/JJAP.38.L1205. DOI: https://doi.org/10.1143/JJAP.38.L1205

J. Kennedy, D. A. Carder, and A. Markwitz, R. J. Reeves, “Properties of nitrogen implanted and electron beam annealed bulk ZnO,” J. Appl. Phys., vol. 107, p. 103518, 2010, doi: 10.1063/1.3380592. DOI: https://doi.org/10.1063/1.3380592

J. Kennedy, P. P. Murmu, and E. Manikandan, S. Y. Lee, “Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals,” J. Alloys Compd., vol. 616, p. 614e617, 2014, doi: 10.1016/j.jallcom.2014.07.179. DOI: https://doi.org/10.1016/j.jallcom.2014.07.179

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” J. Nanotechnol., vol. 20, p. 245502, 2009, doi: 10.1088/0957-4484/20/24/245502. DOI: https://doi.org/10.1088/0957-4484/20/24/245502

J. C. Thomas, and A. van der Ven, “Finite-temperature properties of strongly anharmonic and mechanically unstable crystal phases from first principles,” Phys. Rev. B, vol. 88, p. 214111, 2013, doi: 10.1103/PhysRevB.88.214111. DOI: https://doi.org/10.1103/PhysRevB.88.214111

M. Haase, H. Weller, and A. Henglein, “Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on ZnO particles & size quantization, J. Phys. Chem., vol. 92, p. 482, 1988, doi: 10.1021/j100313a047. DOI: https://doi.org/10.1021/j100313a047

F. Buda, J. Kadanoff, and M. Parinello, “Optical properties of porous silicon: A first principles study,” Phys. Rev. Lett., vol. 69, p. 1272, 1992, doi: 10.1103/PhysRevLett.69.1272. DOI: https://doi.org/10.1103/PhysRevLett.69.1272

G. Hearne, et al., “Effect of grain size on structural transitions in anatase TiO2: A Raman spectroscopy study at high pressure,” Phys. Rev. B, vol. 70, no. 13, p. 134102, 2004, doi: 10.1103/PhysRevB.70.134102. DOI: https://doi.org/10.1103/PhysRevB.70.134102

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature, vol. 370, p. 354, 1994, doi: 10.1038/370354a0. DOI: https://doi.org/10.1038/370354a0

L. E. Brus, “Electronic wave functions in semiconductor clusters: Experiment and theory,” J. Phys. Chem., vol. 90, p. 2555, 1986, doi: 10.1021/j100403a003. DOI: https://doi.org/10.1021/j100403a003

R. Viswanatha, S. Sapra, B. Satpati, P. V. Satyam, B. N. Dev, and D. D. Sama, “Understanding the quantum size effects in ZnO nanocrystals,” J. Mater. Chem., vol. 14, p. 661, 2004, doi: 10.1039/b310404d5. DOI: https://doi.org/10.1039/b310404d

O. Madelung, Ed. Data in Science and Technology, Semiconductors Other than Group IV Elements and III-V Compounds, Berlin, Germany: Springer, 1992. DOI: https://doi.org/10.1007/978-3-642-45681-7

E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” J. Phys. Chem. B, vol. 102, p. 5566, 1998, doi: 10.1021/jp980730h. DOI: https://doi.org/10.1021/jp980730h

E. M. Wong, J. E. Bonevich, and P. C. Pearson, “Ultrafast studies of photoexcited electron dynamics in g- and a-Fe2O3 semiconductor nanoparticles,” J. Phys. Chem. B, vol. 102, no. 770, 1998, doi: 10.1021/jp982397n. DOI: https://doi.org/10.1021/jp973149e

S. Cho, et al., “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films by the oxidation of the metallic Zn,” Appl. Phys. Lett., vol. 75, p. 2761, 1999, doi: 10.1063/1.125141. DOI: https://doi.org/10.1063/1.125141

A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., vol. 84, p. 2287, 1998, doi: 10.1063/1.368295. DOI: https://doi.org/10.1063/1.368295

H. J. Ko, T. Yao, Y. Chen, and S. K. Hong, “Investigation of ZnO epilayers grown under various Zn/O ratios by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 92, p. 4354, 2002, doi: 10.1063/1.1509103. DOI: https://doi.org/10.1063/1.1509103

T. Koida, S. F. Chichibu, and A. Uedono, “Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO,” Appl. Phys. Lett., vol. 82, p. 532, 2003, doi: 10.1063/1.1540220. DOI: https://doi.org/10.1063/1.1540220

S. Bethke, H. Pan, and B.W. Wessels, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett., vol. 52, p. 138, 1988, doi: 10.1063/1.99030. DOI: https://doi.org/10.1063/1.99030

Y. Hen, et al., “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: growth and characterization,” J. Appl. Phys., vol. 84, p. 3912, 1998, doi: 10.1063/1.368595. DOI: https://doi.org/10.1063/1.368595

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, p. 1947, 2001, doi: 10.1126/science.1058120. DOI: https://doi.org/10.1126/science.1058120

B. D. Ngom, M. Chaker, N. Manyala, B. Lo, M. Maaza, and A. C. Beye, “Temperature-dependent growth mode of W-doped ZnO nanostructures,” Appl. Surf. Sci., vol. 257, p. 6226e6232, 2011, doi: 10.1016/j.apsusc.2011.02.043. DOI: https://doi.org/10.1016/j.apsusc.2011.02.043

B. D. Ngom, et al., “Structural, morphological and photoluminescence properties of W-doped ZnO nanostructures,” Appl. Surf. Sci., vol. 255, p. 7314e7318, 2009, doi: 10.1016/j.apsusc.2009.03.089. DOI: https://doi.org/10.1016/j.apsusc.2009.03.089

M. Kaidashev, et al., “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition,” Appl. Phys. Lett., vol. 82, no. 32, p. 3901, 2003, doi: 10.1063/1.1578694. DOI: https://doi.org/10.1063/1.1578694

X. D. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, “Large-scale synthesis of six-nanometer-wide ZnO nanobelts,” J. Phys. Chem. B, vol. 108, p. 8773e8777, 2004, doi: 10.1021/jp048482e. DOI: https://doi.org/10.1021/jp048482e

Z. Qiu, K. S. Wong, M. Wu, W. Lin, and H. Xu, “Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation,” Appl. Phys. Lett., vol. 84, no. 15, p. 2739, 2004, doi: 10.1063/1.1697633. DOI: https://doi.org/10.1063/1.1697633

S. H. Tolbert, and A. P. Alivisatos, “The Wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure,” J. Chem. Phys., vol. 102, p. 4642, 1995, doi: 10.1063/1.469512. DOI: https://doi.org/10.1063/1.469512

I. Shalish, H. Temkin, and V. Narayamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B, vol. 69, p. 245401, 2004, doi: 10.1103/PhysRevB.69.245401. DOI: https://doi.org/10.1103/PhysRevB.69.245401

O. I. Micic, J. R. Sprague, Z. Lu, and A. J. Nozik, “Highly efficient band-edge emission from InP quantum dots,” Appl. Phys. Lett., vol. 68, p. 3150, 1996, doi: 10.1063/1.115807. DOI: https://doi.org/10.1063/1.115807

O.I. Micic, et al., “Size-dependent spectroscopy of InP quantum dots,” J. Phys. Chem. B, vol. 101, p. 4904, 1997, doi: 10.1021/jp9704731. DOI: https://doi.org/10.1021/jp9704731

Ph. Buffat, and J-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A, vol. 13, p. 2287, 1976, doi: 10.1103/PhysRevA.13.2287. DOI: https://doi.org/10.1103/PhysRevA.13.2287

N. Kana, S. Khamlich, J. B. Kana Kana, and M. Maaza, “Peculiar surface size-effects in NaCl nanocrystals,” Surf. Rev. Lett., vol. 20, no. 1, p. 1350001, 2013, doi: 10.1142/S0218625X13500017. DOI: https://doi.org/10.1142/S0218625X13500017

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys., vol. 58, p. 533, 1986, doi: 10.1103/RevModPhys.58.533. DOI: https://doi.org/10.1103/RevModPhys.58.533

V. P. Skripov, V. P. Koverda, and V. N. Skokov, “Size effect on melting of small particles,” Phys. Status Solidi, vol. 66, pp. 109–118, 1981, doi: 10.1002/pssa.2210660111. DOI: https://doi.org/10.1002/pssa.2210660111

A. Heidenreich, I. Oref, and J. Jortner, “Isomerization dynamics of sodium chloride tetrameric clusters,” J. Chem. Phys., vol. 96, no. 19, pp. 7517–7523, 1992, doi: 10.1021/j100198a010. DOI: https://doi.org/10.1021/j100198a010

U. Landman, D. Scharf, and J. Jortner, “Electron localization in alkali-halide clusters,” Phys. Rev. Lett., vol. 54, no. 16, p. 1860, 1985, doi: 10.1103/PhysRevLett.54.1860. DOI: https://doi.org/10.1103/PhysRevLett.54.1860

D. Scharf, J. Jortner, and U. Landman, “Cluster isomerization induced by electron attachment,” J. Chem. Phys., vol. 87, pp. 2716–2723, 1987, doi: 10.1063/1.453059. DOI: https://doi.org/10.1063/1.453059

D. Patterson, J. A. Morrison, and F. W. Thompson, “Low temperature particle size effect on the heat capacity of NaCl,” Can. J. Chem., vol. 33, no. 2, pp. 240–244, 1955, doi: 10.1139/v55-027. DOI: https://doi.org/10.1139/v55-027

J. E. Campana, T.M. Barlak, R. Colton, J. J. DeCorpo, J. R. Wyatt, and B. I. Dunlap., “Effect of cluster surface energies on secondary-ion-intensity distributions from ionic crystals,” Phys. Rev. Lett., vol. 47, pp. 1046–1049, 1981, doi: 10.1103/PhysRevLett.47.1046. DOI: https://doi.org/10.1103/PhysRevLett.47.1046

T. P. Martin, “Alkali halide clusters and microcrystals,” Phys. Rep., vol. 95, no. 3, pp. 167–199, 1983, doi: 10.1016/0370-1573(83)90024-8. DOI: https://doi.org/10.1016/0370-1573(83)90024-8

R. L. Whetten, “Alkali halide nanocrystals,” Acc. Chem. Res., vol. 26, no. 2, pp. 49–56, 1993, doi: 10.1021/ar00026a003. DOI: https://doi.org/10.1021/ar00026a003

J. E. Lester, and G. A. Somorjai, “The effect of dislocations on the vaporization rate of NaCl single crystals,” Appl. Phys. Lett., vol. 12, p. 216, 1968, doi: 10.1063/1.1651959. DOI: https://doi.org/10.1063/1.1651959

R. R. Hudgins, Ph. Dugourd, J. M. Tanenbaum, and M. F. Jarold, “Structural transitions in sodium chloride nanocrystals,” Phys. Rev. Lett., vol. 78, p. 421, 1997, doi: 10.1103/PhysRevLett.78.4213. DOI: https://doi.org/10.1103/PhysRevLett.78.4213

GmeLin Handbook of Inorganic Chemistry, 8th ed. Berlin, Germany: Springer, 1928.

P.R. Couchman, and W. A. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature, vol. 269, pp. 481–483, 1977, doi: 10.1038/269481a0. DOI: https://doi.org/10.1038/269481a0

D. Bersani, P. P. Lottici, and X-Z. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett., vol. 72, no. 1, pp. 73–75, 1998, doi: 10.1063/1.120648. DOI: https://doi.org/10.1063/1.120648

H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun., vol. 39, no. 5, pp. 625–629, 1981, doi: 10.1016/0038-1098(81)90337-9. DOI: https://doi.org/10.1016/0038-1098(81)90337-9

I. H. Campbell, and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun., vol. 58, no. 10, pp. 739–741,1986, doi: 10.1016/0038-1098(86)90513-2. DOI: https://doi.org/10.1016/0038-1098(86)90513-2

D. R. dos Santos, and I. L. Torriani, “Crystallite size determination in μc-Ge films by x-ray diffraction and Raman line profile analysis,” Solid State Commun., vol. 85, no. 4, pp. 307–310, 1993, doi: 10.1016/0038-1098(93)90021-E. DOI: https://doi.org/10.1016/0038-1098(93)90021-E

D. Bersani, and P. P. Lottici, “Confinement effects on the LO-phonons in CdSexS1-x doped glasses,” Phys. Status Solidi B, vol. 174, no. 2, pp. 575–582, 1992, doi: 10.1002/pssb.2221740227. DOI: https://doi.org/10.1002/pssb.2221740227

A. Tu, and P. D. Persans, “Raman scattering as a probe of composition in II–VI ternary semiconductor-glass composites,” Appl. Phys. Lett., vol. 58, p. 1506, 1991, doi: 10.1063/1.105160. DOI: https://doi.org/10.1063/1.105160

C. E. Bottani, et al., “Raman, optical‐absorption, and transmission electron microscopy study of size effects in germanium quantum dots.” Appl. Phys. Lett., vol. 69, no. 16, pp. 2409–2411, 1996, doi: 10.1063/1.117653. DOI: https://doi.org/10.1063/1.117653

P. P. Lottici, D. Bersani, M. Braghini, and A. Montenero, “Raman scattering characterization of gel-derived titania glass,” J. Mater. Sci., vol. 28, pp. 177–183, 1993, doi: 10.1007/BF00349049. DOI: https://doi.org/10.1007/BF00349049

T. Ohsaka, S. Yamahoka, and O. Shimomura, “Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2),” Solid State Commun., vol. 30, no. 6, pp. 345–347, 1979, doi: 10.1016/0038-1098(79)90648-3. DOI: https://doi.org/10.1016/0038-1098(79)90648-3

J. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile,” Phys. Rev. B, vol. 3, p. 3457, 1971, doi: 10.1103/PhysRevB.3.3457. DOI: https://doi.org/10.1103/PhysRevB.3.3457

P. Pyykkö, “Relativistic effects in structural chemistry,” Adv. Quantum Chem., vol. 11, p. 353, 1978, doi: 10.1016/S0065-3276(08)60241-5. DOI: https://doi.org/10.1016/S0065-3276(08)60241-5

M. C. Wilkinson, “Surface properties of mercury,” Chem. Rev., vol. 72, no. 6, pp. 575–625, 1972, doi: 10.1021/cr60280a001. DOI: https://doi.org/10.1021/cr60280a001

R. Evans, “The Monte Carlo method for the study of phase transitions: A review of some recent progress,” J. Phys. C, vol. 7, p. 2808, 1974.

S. Amokrane, et al., “A pseudo-atom theory for the liquid-vapor interface of simple metals,” J. Phys. Chem., vol. 75, p. 5543, 1982, doi: 10.1063/1.441959. DOI: https://doi.org/10.1063/1.441959

N. D. Lang, et al., “Theory of metal surfaces,” Phys. Rev. B, vol. 12, p. 4555, 1970, doi: 10.1103/PhysRevB.1.4555. DOI: https://doi.org/10.1103/PhysRevB.1.4555

E. Chacon, et al., “Nonlocal kinetic energy functional for nonhomogeneous electron systems,” Phys. Rev. B, vol. 32, p. 7868, 1985, doi: 10.1103/PhysRevB.32.7868. DOI: https://doi.org/10.1103/PhysRevB.32.7868

M. A. Gomez, et al., “Electronic structure: wide-band, narrow-band, and strongly correlated systems,” Phys. Rev. B, vol. 46, p. 6665, 1992.

M. Magnussen, et al., “X-ray reflectivity measurements of surface layering in liquid mercury,” Phys. Rev. Lett., vol. 74, no. 22, p. 4444, 1995, doi: 10.1103/PhysRevLett.74.4444. DOI: https://doi.org/10.1103/PhysRevLett.74.4444

U. Bafile, et al., “Neutron diffraction on mercury: Density dependence of the static structure factor,” J. Non-Cryst. Solids., vol. 35, pp. 250–252, 1999, doi: 10.1016/S0022-3093(99)00210-0. DOI: https://doi.org/10.1016/S0022-3093(99)00210-0

U. Bafile, et al., “The microscopic structure of liquid mercury from neutron and X-ray diffraction,” Physica. B, vol. 452, pp. 276–278, 2000, doi: 10.1016/S0921-4526(99)01671-3. DOI: https://doi.org/10.1016/S0921-4526(99)01671-3

D. A. Young, Phase Diagram of Elements. Los Angeles, CA: University of California, 1991, doi: 10.1525/9780520911482. DOI: https://doi.org/10.1525/9780520911482

T. Matsui, et al., “Synthesis and characterization of cerium oxide nanoparticles coated with turbostratic boron nitride,” J. Mater. Chem., vol. 13, pp. 622–627, 2003, doi: 10.1039/b208109a. DOI: https://doi.org/10.1039/b208109a

N. Gaston, et al., “The lattice structure of mercury: Influence of electronic correlation,” Phys. Rev. B, vol. 74, p. 094102, 2006, doi: 10.1103/PhysRevB.74.094102. DOI: https://doi.org/10.1103/PhysRevB.74.094102

F. R. S. Rayleigh, “On the electromagnetic theory of light,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 12, no. 73, pp. 81–101, 1881, doi: 10.1080/14786448108627074. DOI: https://doi.org/10.1080/14786448108627074

F. R. S. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 47, no. 287, pp. 375–384, 1981, doi: 10.1080/14786449908621276. DOI: https://doi.org/10.1080/14786449908621276

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys., vol. 330, no. 3, pp. 377–445, 1908, doi: 10.1002/andp.19083300302. DOI: https://doi.org/10.1002/andp.19083300302

W. Hergert, and T. Wriedt, The Mie Theory. Berlin, Germany: Springer, 2012. doi: 10.1007/978-3-642-28738-1. DOI: https://doi.org/10.1007/978-3-642-28738-1

M. Wang, M. Cao, Z. R. Guo, and N. Gu, “Generalized multiparticle Mie modeling of light scattering by cells,” Chin. Sci. Bull., vol. 58, no. 21, pp. 2663–2666, 2013, doi: 10.1007/s11434-013-5719-0. DOI: https://doi.org/10.1007/s11434-013-5719-0

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev., vol. 109, pp. 1492–1505, 1958. DOI: https://doi.org/10.1103/PhysRev.109.1492

D. J. Thouless, “Anderson’s theory of localized states,” J. Phys. C: Solid State Phys., vol. 4, p. 1559, 1970, doi: 10.1103/PhysRev.109.1492. DOI: https://doi.org/10.1088/0022-3719/3/7/012

P. W. Anderson, “Local moments and localized states,” Rev. Mod. Phys., vol. 50, p. 191, 1978, doi: 10.1103/RevModPhys.50.191. DOI: https://doi.org/10.1103/RevModPhys.50.191

D. C. Licciardello, and D. J. Thouless, “Constancy of minimum metallic conductivity in two dimensions,” Phys. Rev. Lett., vol. 35, p. 1475, 1974, doi: 10.1103/PhysRevLett.35.1475. DOI: https://doi.org/10.1103/PhysRevLett.35.1475

H.G. Schuster, “On a relation between the mobility edge problem and an isotropic XY model,” Zeitschrift für Physik B Condensed Matter, vol. 31, pp. 99–104, 1978, doi: 10.1007/BF01320130. DOI: https://doi.org/10.1007/BF01320130

W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion,” Phys. Rev. Lett., vol. 42, p. 673, 1979, doi: 10.1103/PhysRevLett.42.673.

N. F. Mott, and W. D. Twose, “The theory of impurity conduction,” Adv. Phys., vol. 10, p. 107, 1961, doi: 10.1080/00018736100101271. DOI: https://doi.org/10.1080/00018736100101271

D. S. Wiersma, M. P. Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events of light in disordered media,” Phys. Rev. Lett., vol. 74, pp. 4193–4196, 1995, doi: 10.1103/PhysRevLett.74.4193. DOI: https://doi.org/10.1103/PhysRevLett.74.4193

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature, vol. 390, pp. 18–25, 1997, doi: 10.1038/37757.

H. Cao, A. Yamilov, J.Y. Xu, E. Seelig, and R. Chang, “Lasing in disordered media,” Proc. SPIE—The Int. Soc. Opt. Eng., vol. 4995, pp. 134–143, 2003, doi: 10.1117/12.479757. DOI: https://doi.org/10.1117/12.479757

A. Maslov, and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett., vol. 83, p. 1237, 2003, doi: 10.1063/1.1599037. DOI: https://doi.org/10.1063/1.1599037

R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, “Microwave localization by two-dimensional random scattering,” Nature, vol. 354, pp. 53–55, 1991, doi: 10.1038/354053a0. DOI: https://doi.org/10.1038/354053a0

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett., vol. 42, pp. 673–676, 1979, doi: 10.1103/PhysRevLett.42.673. DOI: https://doi.org/10.1103/PhysRevLett.42.673

R. Kaiser, T. Jonckheere, A. Müller, C. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett., vol. 85, no. 20, pp. 4269–4272, 2000, doi: 10.1103/PhysRevLett.85.4269. DOI: https://doi.org/10.1103/PhysRevLett.85.4269

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A, vol. 44, pp. 3948–3957, 1991, doi: 10.1103/PhysRevA.44.3948.

K. Arya, Z. B. Su, and J. L. Birman, “Anderson localization of electromagnetic waves in a dielectric medium of randomly distributed metal particles,” Phys. Rev. Lett., vol. 57, pp. 2725–2728, 1986, doi: 10.1103/PhysRevLett.57.2725. DOI: https://doi.org/10.1103/PhysRevLett.57.2725

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett., vol. 94, p. 113903, 2005, doi: 10.1103/PhysRevLett.94.113903. DOI: https://doi.org/10.1103/PhysRevLett.94.113903

S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Express, vol. 20, no. 17, pp. 18692–18706, 2012, doi: 10.1364/OE.20.018692. DOI: https://doi.org/10.1364/OE.20.018692

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Advances in the fabrication of disordered transverse Anderson localizing optical fibers,” Opt. Mater. Express, vol. 2, no. 11, pp. 1496–1503, 2012, doi: 10.1364/OME.2.001496. DOI: https://doi.org/10.1364/OME.2.001496

M. Maaza, et al., “On the possible optical resonance in carbon nanotubes based cavities,” Int. J. Nanotechnol., vol. 4, pp. 638–650, 2007, doi: 10.1504/IJNT.2007.015460. DOI: https://doi.org/10.1504/IJNT.2007.015460

M. Maaza, and C. N. R. Rao, “Anderson localization of IR light in 1D nanosystems,” J. Opt. Soc. Am. A, vol. 37, no. 11, pp. C111–C117, 2020, doi: 10.1364/JOSAA.394917. DOI: https://doi.org/10.1364/JOSAA.394917

C. N. R. Rao, and A. Govindaraj, “Organometallic precursor route to carbon nanotubes,” Pure Appl. Chem., vol. 74, no. 9, p. 1571, 2002, doi: 10.1351/pac200274091571. DOI: https://doi.org/10.1351/pac200274091571

O. Lummer, and E. Gehrcke, “On the diffraction of light incident at nearly the critical angle on the boundary between two media,” Ann. Phys. Band, vol. 10, p. 457, 1903, doi: 10.1002/andp.19033150302. DOI: https://doi.org/10.1002/andp.19033150302

M. Born, and E. Wolf, The Lummer-Gehrcke Interferometer. Principles of Optics, 7th ed. Cambridge, UK: CUP, 1999.

J. K. Robertson, “Computation of correlated color temperature and distribution temperature,” J. Opt. Soc. Am., vol. 11, no. 5, pp. 559–563, 1925.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature, vol. 390, p. 671, 1997, doi: 10.1038/37757. DOI: https://doi.org/10.1038/37757

A. A. Chabanov, and A. Z. Genack, “Statistics of dynamics of localized waves,” Phys. Rev. Lett., vol. 87, p. 233903, 2001, doi: 10.1103/PhysRevLett.87.233903. DOI: https://doi.org/10.1103/PhysRevLett.87.233903

P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena. New York, NY: AP, 1995, doi: 10.1016/B978-012639845-8/50010-1. DOI: https://doi.org/10.1016/B978-012639845-8/50010-1

J. A. Sanchez-Gil, and V. Freilikher, “Resonances in the one-dimensional Anderson localization,” Phys. Rev. B, vol. 68, p. 075103, 2003, doi: 10.1103/PhysRevB.68.075103. DOI: https://doi.org/10.1103/PhysRevB.68.075103

K. Y. Bliokh, Y. P. Bliokh, and V. Freilikher, “Resonances in one-dimensional disordered systems,” J. Opt. Soc. Am. B, vol. 21, p. 113, 2004, doi: 10.1364/JOSAB.21.000113. DOI: https://doi.org/10.1364/JOSAB.21.000113

S. X. Zhu, D. J. Pine, and D. A. Weitz., “Internal reflection of diffusive light in random media,” Phys. Rev. A, vol. 44, no. 6, p. 3948, 1991, doi: 10.1103/PhysRevA.44.3948. DOI: https://doi.org/10.1103/PhysRevA.44.3948

A. Steyerl, K. A. Steinhauser, H. Sheckenhofer, and S. S. Malik, “Observation of quasibound states of the neutron in matter,” Phys. Rev. Lett., vol. 44, p. 1306, 1980, doi: 10.1103/PhysRevLett.44.1306. DOI: https://doi.org/10.1103/PhysRevLett.44.1306

A. Steyerl, T. Ebisawa, K. A. Steinhauser, and M. Utsuro, “Experimental study of macroscopic coupled resonators for neutron waves,” Zeitschrift für Physik B Cond. Matt., vol. 41, pp. 283–290, 1981, doi: 10.1007/BF01307316. DOI: https://doi.org/10.1007/BF01307316

A. Steyerl, W. Drexel, S. S. Malik, and E. Gutsmeidl, “Neutron resonators and interferometers for very low energy neutrons,” Physica B+C, vol. 151, no. 1–2, pp. 36–43, 1988, doi: 10.1016/0378-4363(88)90142-8. DOI: https://doi.org/10.1016/0378-4363(88)90142-8

M. Maaza, and D. Hamidi, “Nano-structured Fabry-Pérot resonators in neutron optics & tunneling of neutron wave-particles,” Phys. Rep., vol. 514, no. 5, pp. 177–198, 2012, doi: 10.1016/j.physrep.2012.01.005. DOI: https://doi.org/10.1016/j.physrep.2012.01.005

M. Maaza, B. Pardo, J. P. Chauvineau, A. Raynal, A. Menelle, and F. Bridou, “Neutron tunneling and neutron lifetime in a Ni-V-Ni Fabry-Perot thin film resonator,” Phys. Lett., vol. 223, no. 3, pp. 145–148, 1996. DOI: https://doi.org/10.1016/S0375-9601(96)00713-X

M. Maaza, et al., “Zeeman neutron tunneling in Ni-Co-Ni thin film resonators,” Phys. Lett. A, vol. 235, no. 1, pp. 19–23, 1997, doi: 10.1016/S0375-9601(97)00571-9. DOI: https://doi.org/10.1016/S0375-9601(97)00571-9

M. Maaza, et al., “Shearing neutron interferometry and possibilities of studying interfacial diffusion processes between two highly dilute solutions,” Phys. Lett. A, vol. 195, no. 1, pp. 1–8, 1994. DOI: https://doi.org/10.1016/0375-9601(94)90417-0

A. Matiwane, J. Sackey, M. L. Lekala, A. Gibaud, and M. Maaza, “Neutron tunneling in nanostructured systems: Isotopical effect,” MRS Adv., vol. 3, no. 42–43, pp. 2609–2616, 2018, doi: 10.1557/adv.2018.228. DOI: https://doi.org/10.1557/adv.2018.228

M. Maaza, L. P. Chernenko, D. A. Korneev, B. Pardo, C. Sella, and F. Bridou, “A way to reach high accuracy in the determination of the magnetic London penetration depth in superconductors by polarized neutron reflectometry,” Phys. Lett. A, vol. 218, no. 3–6, pp. 312–318, 1996, doi: 10.1016/0375-9601(96)00415-X. DOI: https://doi.org/10.1016/0375-9601(96)00415-X

M. Maaza, et al., “Monochromation and apodization with Ti-B4C multilayers in neutron optics,” Phys. B: Phys. Condens. Matter, vol. 198, no. 1–3, pp. 231–234, 1994, doi: 10.1016/0921-4526(94)90167-8. DOI: https://doi.org/10.1016/0921-4526(94)90167-8

V. F. Sears, Neutron optics: An introduction to the theory of neutron optical phenomena and their applications. Oxford: UK: OUP, 1989.

C. G. Shull, “Single-slit diffraction of neutrons,” Phys. Rev., vol. 179, p. 752, 1969, doi: 10.1103/PhysRev.179.752. DOI: https://doi.org/10.1103/PhysRev.179.752

H. Maier-Leibnitz, and T. Springer, “Ein Interferometer für langsame Neutronen,” Zeitschrift für Physik, vol. 167, pp. 386–402, 1962, doi: 10.1007/BF01378119. DOI: https://doi.org/10.1007/BF01378119

F. J. Landkammer, “Beugungsversuche mit langsamen Neutronen,” Zeitschrift für Physik, vol. 189, pp. 113–137, 1966, doi: 10.1007/BF01327150. DOI: https://doi.org/10.1007/BF01327150

H. Kurz, and H. Rauch, “Diffraction of thermal neutrons by a ruled grating,” Zeitschrift für Physik, vol. 220, pp. 419–426, 1969, doi: 10.1007/BF01394786. DOI: https://doi.org/10.1007/BF01394786

H. Rauch, W. Treimer, and U. Bonse, “Test of a single crystal neutron interferometer,” Phys. Lett. A, vol. 47, no. 5, pp. 369–371, 1974, doi: 10.1016/0375-9601(74)90132-7. DOI: https://doi.org/10.1016/0375-9601(74)90132-7

B. P. Schoenborn, D.L. D. Caspar, and O. F. Kammerer, “A novel neutron monochromator,” J. Appl. Cryst., vol. 7, pp. 508–510, 1974, doi: 10.1107/S0021889874010302. DOI: https://doi.org/10.1107/S0021889874010302

C. F. Majkrzack, “Neutron diffraction studies of thin film multilayer structures,” Physica B+C, vol. 136, no. 1–3, pp. 69–74, 1986, doi: 10.1016/S0378-4363(86)80023-7. DOI: https://doi.org/10.1016/S0378-4363(86)80023-7

F. Mezei, and P. A. Dagleisch, “Corrigendum and first experimental evidence on neutron supermirrors,” Commun. Phys., vol. 2, pp. 41–43, 1977.

J. B. Hayter, and H. A. Mook, “Discrete thin-film multilayer design for X-ray and neutron supermirrors,” J. Appl. Cryst., vol. 22, pp. 35–41, 1989, doi: 10.1107/S0021889888010003. DOI: https://doi.org/10.1107/S0021889888010003

E. Fermi, and W. H. Zinn, “Reflection of neutrons on mirrors,” Phys. Rev., vol. 70, p. 103, 1946.

E. Fermi, and L. Marshall, “Interference phenomena of slow neutrons,” Phys. Rev., vol. 71, p. 666, 1947, doi: 10.1103/PhysRev.71.666. DOI: https://doi.org/10.1103/PhysRev.71.666

V.F. Sears, “Neutron scattering lengths and cross sections,” Neutron News, vol. 3, no. 3, pp. 26–37, 1992, doi: 10.1080/10448639208218770. DOI: https://doi.org/10.1080/10448639208218770

G. P. Felcher, R. T. Kampwirth, K. E. Gray, and R. Felici, “Polarized-neutron reflections: A new technique used to measure the magnetic field penetration depth in superconducting niobium,” Phys. Rev. Lett., vol. 52, p. 1539, 1984, doi: 10.1103/PhysRevLett.52.1539. DOI: https://doi.org/10.1103/PhysRevLett.52.1539

V. K. Ignatovich, The Physics of Ultra Cold Neutrons. Oxford: UK: OUP, 1990.

P. Croce, and B. Pardo, “Sur l’application des Couches Interferentielles a l’Optique des rayons X et de neutrons,” Nouv. Rev. D’Optique Appliquee, vol. 1, no. 4, pp. 229–232, 1970, doi: 10.1088/0029-4780/1/4/306. DOI: https://doi.org/10.1088/0029-4780/1/4/306

Downloads

Published

2022-12-30

How to Cite

[1]
M. Maaza, “ Peculiar Size Effects in Nanoscaled Systems ”, NH, vol. 1, p. 36 pages, 2022.

Issue

Section

Review Article