Recent Advances in Materials for Supercapacitors




supercapacitor, energy storage, electrochemistry, specific capacitance, efficiency


The fluctuating availability of energy sources has encouraged the development of energy storage devices such as supercapacitors. Supercapacitors are good electrochemical energy storage materials that have demonstrated promising efficiencies in diverse applications. They are able to release high power at low energy operating conditions. In this article, we introduce basic knowledge on supercapacitors, their different classifications, and their relevance to material development. We outline the progress made on diverse materials adopted in improving the performance, charge retention, and stability of supercapacitive materials. Finally, we discuss the different methods utilised in obtaining highly stable supercapacitors.


Metrics Loading ...

Author Biographies

Agnes C. Nkele, University of Nigeria

Department of Physics and Astronomy, University of Nigeria.

Department of Physics, Colorado State University, United States.

Raphael M. Obodo, University of Nigeria

Department of Physics and Astronomy, University of Nigeria.

National Center for Physics, Pakistan.

NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, China.

Chinedu P. Chime, University of Nigeria

Department of Agricultural and Bioresources Engineering, University of Nigeria.

Assumpta C. Nwanya, University of Nigeria.

Department of Physics and Astronomy, University of Nigeria.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

UNESCO–UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

C Iroegbu, Federal University of Technology, Nigeria

Department of Physics, Federal University of Technology, Nigeria.

Malek Maaza, University of South Africa []

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

UNESCO–UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Fabian I. Ezema, University of Nigeria

Department of Physics and Astronomy, University of Nigeria.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

UNESCO–UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa.

Africa Centre of Excellence for Sustainable Power and Energy Development, University of Nigeria.


Y. Gogotsi, “Energy storage wrapped up,” Nature, vol. 509, no. 7502, pp. 568–569, 2014, doi: 10.1038/509568a.

P. Simon, Y. Gogotsi, and B. Dunn, “Where do batteries end and supercapacitors begin?,” Science, vol. 343, no. 6176, pp. 1210–1211, 2014, doi: 10.1126/science.1249625.

J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, “Desolvation of ions in subnanometer pores and its effect on capacitance and double‐layer theory,” Angew. Chem. Int. Ed., vol. 47, no. 18, pp. 3392–3395, 2008, doi: 10.1002/anie.200704894.

Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, “Carbon materials for chemical capacitive energy storage,” Adv. Mater., vol. 23, no. 42, pp. 4828–4850, 2011, doi: 10.1002/adma.201100984.

J. Xie, C. Zhao, Z. Lin, P. Gu, and Q. Zhang, “Nanostructured conjugated polymers for energy‐related applications beyond solar cells,” Chem.: Asian J., vol. 11, no. 10, pp. 1489–1511, 2016, doi: 10.1002/asia.201600293.

J. Xie, P. Gu, and Q. Zhang, “Nanostructured conjugated polymers: Toward high-performance organic electrodes for rechargeable batteries,” ACS Energy Lett., vol. 2, no. 9, pp. 1985–1996, 2017, doi: 10.1021/acsenergylett.7b00494.

Y. Zhang, J. Liu, S.-L. Li, Z.-M. Su, and Y.-Q. Lan, “Polyoxometalate-based materials for sustainable and clean energy conversion and storage,” EnergyChem, vol. 1, no. 3, p. 100021, 2019, doi: 10.1016/j.enchem.2019.100021.

X. Zhan, Z. Chen, and Q. Zhang, “Recent progress in two-dimensional COFs for energy-related applications,” J. Mater. Chem. A, vol. 5, no. 28, pp. 14463–14479, 2017, doi: 10.1039/C7TA02105D.

P. He et al., “Building better zinc-ion batteries: a materials perspective,” EnergyChem, vol. 1, no. 3, p. 100022, 2019, doi: 10.1016/j.enchem.2019.100022.

M. Winter and R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?,” Chem. Rev., vol. 104, no. 10, pp. 4245–4270, 2004, doi: 10.1021/cr020730k.

B. E. Conway, Electrochemical supercapacitors: Scientific fundamentals and technological applications. Springer Science & Business Media, 2013.

A. Al-Othman, M. Tawalbeh, O. Temsah, and M. Al-Murisi, “Industrial challenges of MOFs in energy applications,” in Encyclopedia of Smart Materials, vol. 2, A Olabi, Ed. Elsevier, 2020, pp. 535–543, doi: 10.1016/B978-0-12-815732-9.00030-9.

Y. Zhang et al., “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy, vol. 34, no. 11, pp. 4889–4899, 2009, doi: 10.1016/j.ijhydene.2009.04.005.

G. A. Sarabi and R. Bagherzadeh, “7—Conductive nanofibrous materials for supercapacitors,” in Engineered Polymeric Fibrous Materials, M. Latifi, Ed. Woodhead, 2021, pp. 157–170, doi: 10.1016/B978-0-12-824381-7.00009-3.

M. S. Halper and C. E. James, Supercapacitors: A Brief Overview. McLean, VA, USA: MITRE, pp. 1–34, 2006.

T. Senthil et al., “Low-dimensional carbon-based nanomaterials for energy conversion and storage applications,” in Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, Elsevier, 2020, pp. 15–68, doi: 10.1016/B978-0-12-819552-9.00002-6.

L. Zhang, D. Shi, T. Liu, M. Jaroniec, and J. Yu, “Nickel-based materials for supercapacitors,” Mater. Today, vol. 25, pp. 35–65, 2019, doi: 10.1016/j.mattod.2018.11.002.

M. Vangari, T. Pryor, and L. Jiang, “Supercapacitors: review of materials and fabrication methods,” J. Energy Eng., vol. 139, no. 2, pp. 72–79, 2013, doi: 10.1061/(ASCE)EY.1943-7897.0000102.

V. V. Obreja, “On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review,” Physica E Low Dimens. Syst. Nanostruct., vol. 40, no. 7, pp. 2596–2605, 2008, doi: 10.1016/j.physe.2007.09.044.

P. Sharma and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Convers. Manag., vol. 51, no. 12, pp. 2901–2912, Dec. 2010, doi: 10.1016/j.enconman.2010.06.031.

R. R. Salunkhe et al., “A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte,” ChemComm, vol. 52, no. 26, pp. 4764–4767, 2016, doi: 10.1039/C6CC00413J.

R. R. Salunkhe et al., “Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications,” Eur. J. Chem., vol. 20, no. 43, pp. 13838–13852, 2014, doi: 10.1002/chem.201403649.

I. M. Nwachukwu, A. C. Nwanya, R. Osuji, and F. I. Ezema, “Nanostructured Mn-doped CeO2 thin films with enhanced electrochemical properties for pseudocapacitive applications,” J. Alloys Compd., vol. 886, p. 161206, 2021, doi: 10.1016/j.jallcom.2021.161206.

A. C. Nwanya et al., “Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage,” Electrochim. Acta, vol. 301, pp. 436–448, 2019, doi: 10.1016/j.electacta.2019.01.186.

Q. Ke and J. Wang, “Graphene-based materials for supercapacitor electrodes–A review,” J. Materiomics, vol. 2, no. 1, pp. 37–54, 2016, doi: 10.1016/j.jmat.2016.01.001.

L. Goswami, A. Kushwaha, S. Goswami, Y. C. Sharma, T. Kim, and K. M. Tripathi, “19—Nanocarbon-based-ZnO nanocomposites for supercapacitor application,” in Nanostructured Zinc Oxide, K. Awasthi, Ed. Elsevier, 2021, pp. 553–573, doi: 10.1016/B978-0-12-818900-9.00008-5.

H. Kim, K.-Y. Park, J. Hong, and K. Kang, “All-graphene-battery: Bridging the gap between supercapacitors and lithium ion batteries,” Sci. Rep., vol. 4, no. 1, pp. 1–8, 2014, doi: 10.1038/srep05278.

C. Zhou, Y. Zhang, Y. Li, and J. Liu, “Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor,” Nano Lett., vol. 13, no. 5, pp. 2078–2085, 2013, doi: 10.1021/nl400378j.

X. Wang et al., “Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors,” Nature Commun., vol. 4, no. 1, pp. 1–8, 2013, doi: 10.1038/ncomms3905.

A. C. Nwanya, D. Obi, R. U. Osuji, R. Bucher, M. Maaza, and F. I. Ezema, “Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications,” J. Solid State Electrochem., vol. 21, no. 9, pp. 2567–2576, Sep. 2017, doi: 10.1007/s10008-017-3520-8.

A. C. Nwanya et al., “Electrochromic and electrochemical supercapacitive properties of room temperature PVP capped Ni(OH)2/NiO thin films,” Electrochim. Acta, vol. 171, pp. 128–141, Jul. 2015, doi: 10.1016/j.electacta.2015.05.005.

A. C. Nwanya et al., “Nanoporous copper-cobalt mixed oxide nanorod bundles as high performance pseudocapacitive electrodes,” J. Electroanal. Chem., vol. 787, pp. 24–35, 2017, doi: 10.1016/j.jelechem.2017.01.031.

P. Simon and Y. Gogotsi, “Capacitive energy storage in nanostructured carbon–electrolyte systems,” Acc. Chem. Res., vol. 46, no. 5, pp. 1094–1103, 2013, doi: 10.1021/ar200306b.

D. Yu et al., “Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage,” Nat. Nanotechnol., vol. 9, no. 7, pp. 555–562, 2014, doi: 10.1038/nnano.2014.93.

Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, “High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes,” Carbon, vol. 49, no. 2, pp. 573–580, 2011, doi: 10.1016/j.carbon.2010.09.060.

S. Shi et al., “Flexible supercapacitors,” Particuology, vol. 11, no. 4, pp. 371–377, 2013, doi: 10.1016/j.partic.2012.12.004.

M. C. Nwankwo et al., “Syntheses and characterizations of GO/Mn3O4 nanocomposite film electrode materials for supercapacitor applications,” Inorg. Chem. Commun., p. 107983, 2020, doi: 10.1016/j.inoche.2020.107983.

R. M. Obodo et al., “Effect of annealing on hydrothermally deposited Co3O4-ZnO thin films for supercapacitor applications,” Mater. Today: Proceedings, 2020, doi: 10.1016/j.matpr.2020.04.229.

R. M. Obodo et al., “Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films,” Surf. Interfaces, vol. 16, pp. 114–119, 2019, doi: 10.1016/j.surfin.2019.05.006.

X. Kang, Y. Ma, J. Wang, X. Shi, B. Liu, and F. Ran, “Fabrication and properties of coral-like Ni/Mn-MOFs as electrode materials for supercapacitors,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 10, pp. 13430–13439, 2021, doi: 10.1007/s10854-021-05921-7.

A. C. Nwanya, P. R. Deshmukh, R. U. Osuji, M. Maaza, C. D. Lokhande, and F. I. Ezema, “Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film,” Sens. Actuators B: Chem., vol. 206, pp. 671–678, 2015, doi: 10.1016/j.snb.2014.09.111.

K.-B. Wang, Q. Xun, and Q. Zhang, “Recent progress in metal–organic frameworks as active materials for supercapacitors,” EnergyChem, vol. 2, no. 1, p. 100025, 2020, doi: 10.1016/j.enchem.2019.100025.

P. Forouzandeh and S. C. Pillai, “Two-dimensional (2D) electrode materials for supercapacitors,” Mater. Today: Proceedings, vol. 41, pp. 498–505, Jan. 2021, doi: 10.1016/j.matpr.2020.05.233.

M. I. H. Mohideen et al., “Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework,” Nature Chem., Vol. 3, pp. 304–310, 2011.

R. Matsuda et al., “Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer,” Chem. Sci., vol. 1, no. 3, pp. 315–321, 2010, doi: 10.1039/c0sc00272k.

A. Shigematsu, T. Yamada, and H. Kitagawa, “Selective separation of water, methanol, and ethanol by a porous coordination polymer built with a flexible tetrahedral ligand,” J. Am. Chem. Soc., vol. 134, no. 32, pp. 13145–13147, 2012, doi: 10.1021/ja306401j.

A. Corma, H. García, and F. X. Llabrés i Xamena, “Engineering metal organic frameworks for heterogeneous catalysis,” Chem. Rev., vol. 110, no. 8, pp. 4606–4655, 2010, doi: 10.1021/cr9003924.

J. Zhou, Y. Yuan, J. Tang, and W. Tang, “Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance,” Energy Storage Mater., vol. 23, pp. 594–601, 2019, doi: 10.1016/j.ensm.2019.03.024.

U. K. Chime et al., “Recent progress in nickel oxide-based electrodes for high-performance supercapacitors,” Curr. Opin. Electrochem., vol. 21, pp. 175–181, Jun. 2020, doi: 10.1016/j.coelec.2020.02.004.

Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue, and H. Pang, “Recent progress in some amorphous materials for supercapacitors,” Small, vol. 14, no. 28, p. 1800426, 2018, doi: 10.1002/smll.201800426.

R. N. Reddy and R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material,” J. Power Sources, vol. 132, no. 1–2, pp. 315–320, 2004, doi: 10.1016/j.jpowsour.2003.12.054.

M.-W. Xu, D.-D. Zhao, S.-J. Bao, and H.-L. Li, “Mesoporous amorphous MnO2 as electrode material for supercapacitor,” J. Solid State Electrochem., vol. 11, no. 8, pp. 1101–1107, 2007, doi: 10.1007/s10008-006-0246-4.

L. Hu, W. Wang, J. Tu, J. Hou, H. Zhu, and S. Jiao, “Self-assembled amorphous manganese oxide/hydroxide spheres via multi-phase electrochemical interactions in reverse micelle electrolytes and their capacitive behavior,” J. Mater. Chem. A, vol. 1, no. 16, pp. 5136–5141, 2013, doi: 10.1039/c3ta10569e.

S. Goel, M. Munjal, R. K. Sharma, and G. Singh, “14—Advanced applications of green materials in supercapacitors,” in Applications of Advanced Green Materials, S. Ahmed, Ed. Woodhead, 2021, pp. 339–371, doi: 10.1016/B978-0-12-820484-9.00014-3.

A. C. Nkele, S. Ezugwu, M. Suguyima, and F. I. Ezema, “New perovskite materials for solar cell applications,” in Electrode Materials for Energy Storage and Conversion, CRC Press, 2021, pp. 411–419, doi: 10.1201/9781003145585-21.

J. N. Udeh et al., “Investigating the properties of cobalt phosphate nanoparticles synthesized by co-precipitation method,” Asian J. Nanosci. Mater., vol. 5, no. 1, pp. 22–35, Jan. 2022, doi: 10.26655/AJNANOMAT.2022.1.3.

J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, “Recent progress of biomass-derived carbon materials for supercapacitors,” J. Power Sources, vol. 451, p. 227794, 2020, doi: 10.1016/j.jpowsour.2020.227794.

L. Sun et al., “From coconut shell to porous graphene-like nanosheets for high-power supercapacitors,” J. Mater. Chem. A, vol. 1, no. 21, pp. 6462–6470, 2013, doi: 10.1039/c3ta10897j.

Y. Wang et al., “Biomass derived carbon as binder-free electrode materials for supercapacitors,” Carbon, vol. 155, pp. 706–726, 2019, doi: 10.1016/j.carbon.2019.09.018.

J. Chaparro-Garnica, D. Salinas-Torres, M. J. Mostazo-López, E. Morallón, and D. Cazorla-Amorós, “Biomass waste conversion into low-cost carbon-based materials for supercapacitors: A sustainable approach for the energy scenario,” J. Electroanal. Chem., vol. 880, p. 114899, Jan. 2021, doi: 10.1016/j.jelechem.2020.114899.

M. Xu et al., “Green conversion of Ganoderma lucidum residues to electrode materials for supercapacitors,” Adv. Compos. Hybrid Mater., pp. 1–11, 2021.

J. Tian, Z. Liu, Z. Li, W. Wang, and H. Zhang, “Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors,” RSC Adv., vol. 7, no. 20, pp. 12089–12097, 2017, doi: 10.1039/C7RA00767A.

D. Chen et al., “Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors,” Electrochim. Acta, vol. 286, pp. 264–270, 2018, doi: 10.1016/j.electacta.2018.08.030.

C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, and K. Jiang, “A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity,” J. Mater. Chem. A, vol. 6, no. 3, pp. 1244–1254, 2018, doi: 10.1039/C7TA07579K.

Z. Sun et al., “Overview of cellulose-based flexible materials for supercapacitors,” J. Mater. Chem. A, vol. 9, no. 12, pp. 7278–7300, 2021, doi: 10.1039/D0TA10504J.

G. Zu et al., “Nanocellulose-derived highly porous carbon aerogels for supercapacitors,” Carbon, vol. 99, pp. 203–211, 2016, doi: 10.1016/j.carbon.2015.11.079.

Q. Wanga, S. Chenb, and D. Zhanga, “CNT yarn-based supercapacitors,” in Carbon Nanotube Fibres and Yarns: Production, Properties and Applications in Smart Textiles, p. 243, 2019, doi: 10.1016/B978-0-08-102722-6.00010-9.

J. Wang et al., “Enhancing dielectric performance of poly (vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticle,” Eng. Sci., vol. 4, no. 24, pp. 79–86, 2018.

Y. Chen, Z. Guo, R. Das, and Q. Jiang, “Starch-based carbon nanotubes and graphene: Preparation, properties and applications,” FAF, vol. 2, no. 4, pp. 13–21, 2020, doi: 10.30919/esfaf1111.

H.-D. Huang, C.-Y. Liu, L.-Q. Zhang, G.-J. Zhong, and Z.-M. Li, “Simultaneous reinforcement and toughening of carbon nanotube/cellulose conductive nanocomposite films by interfacial hydrogen bonding,” ACS Sustain. Chem. Eng., vol. 3, no. 2, pp. 317–324, 2015, doi: 10.1021/sc500681v.

Y. Bai, R. Liu, E. Li, X. Li, Y. Liu, and G. Yuan, “Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications,” J. Alloys Compd., vol. 777, pp. 524–530, 2019, doi: 10.1016/j.jallcom.2018.10.376.

Z. Zhang et al., “Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor,” J. Phys. Chem. C, vol. 123, no. 38, pp. 23374–23381, 2019, doi: 10.1021/acs.jpcc.9b06058.

A. C. Nkele and F. I. Ezema, “Voltammetric sensors for diverse analysis,” in Voltammetry for Sensing Applications, p. 103, 2022, doi: 10.2174/9789815039719122010005.

J. M. Zhang et al., “Cellulose-derived highly porous three-dimensional activated carbons for supercapacitors,” ACS Omega, vol. 3, no. 11, pp. 14933–14941, 2018, doi: 10.1021/acsomega.8b02075.

S. De, S. Acharya, S. Sahoo, and G. C. Nayak, “Present status of biomass-derived carbon-based composites for supercapacitor application,” in Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, Elsevier, 2020, pp. 373–415, doi: 10.1016/B978-0-12-819552-9.00012-9.

J. Zhang et al., “The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors,” J. Power Sources, vol. 419, pp. 99–105, 2019, doi: 10.1016/j.jpowsour.2019.02.059.

L. Fuzhi et al., “Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors,” Electrochim. Acta, vol. 390, p. 138893, Sep. 2021, doi: 10.1016/j.electacta.2021.138893.

M. Fu et al., “Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors,” J. Colloid Interface Sci., vol. 588, pp. 795–803, Apr. 2021, doi: 10.1016/j.jcis.2020.11.114.

Z. Liu, L. Wang, Y. Xu, J. Guo, S. Zhang, and Y. Lu, “A Ti3C2TX@PEDOT composite for electrode materials of supercapacitors,” J. Electroanal. Chem., vol. 881, p. 114958, Jan. 2021, doi: 10.1016/j.jelechem.2020.114958.

J. Zou et al., “Microwave rapid synthesis of nickel cobalt sulfides/CNTs composites as superior cycling ability electrode materials for supercapacitors,” J. Mater. Sci., vol. 56, no. 2, pp. 1561–1576, 2021, doi: 10.1007/s10853-020-05257-3.

J. N. Udeh, R. M. Obodo, A. C. Nkele, A. C. Nwanya, P. M. Ejikeme, and F. I. Ezema, “Recent advances in usage of cobalt oxide nanomaterials as electrode material for supercapacitors,” in Electrode Materials for Energy Storage and Conversion, pp. 141–170, 2021, doi: 10.1201/9781003145585-7.

A. C. Nwanya et al., “Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method,” Electrochim. Acta, vol. 128, pp. 218–225, 2014, doi: 10.1016/j.electacta.2013.10.002.

A. C. Nwanya et al., “Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode,” Electrochim. Acta, vol. 198, pp. 220–230, Apr. 2016, doi: 10.1016/j.electacta.2016.03.064.

A. C. Nkele et al., “Investigating the properties of nano nest-like nickel oxide and the NiO/perovskite for potential application as a hole transport material,” Adv. Nat. Sci: Nanosci. Nanotechnol., vol. 10, no. 4, p. 045009, Nov. 2019, doi: 10.1088/2043-6254/ab5102.

A. C. Nkele et al., “The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device,” Int. J. Energy Res., 2020, doi:

T. Brousse, D. Bélanger, and J. W. Long, “To be or not to be pseudocapacitive?,” J. Electrochem. Soc., vol. 162, no. 5, pp. A5185–A5189, Jan. 2015, doi: 10.1149/2.0201505jes.

R. M. Obodo et al., “Radiations induced defects in electrode materials for energy storage devices,” Radiat. Phys. Chem., vol. 191, p. 109838, 2022, doi: 10.1016/j.radphyschem.2021.109838.

X. Qi, W. Zheng, X. Li, and G. He, “Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life,” Sci. Rep., vol. 6, no. 1, pp. 1–10, 2016, doi: 10.1038/srep33241.

A. M. Abdalla, R. P. Sahu, C. J. Wallar, R. Chen, I. Zhitomirsky, and I. K. Puri, “Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application,” Nanotechnology, vol. 28, no. 7, p. 075603, 2017, doi: 10.1088/1361-6528/aa53f3.

A. C. Nkele, I. S. Ike, S. Ezugwu, M. Maaza, and F. I. Ezema, “An overview of the mathematical modelling of perovskite solar cells towards achieving highly efficient perovskite devices,” Int. J. Energy Res., vol. 45, no. 2, pp. 1496–1516, 2020, doi: 10.1002/er.5987.

X. Fu et al., “Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor,” Sci. China Mater., vol. 62, no. 7, pp. 955–964, 2019, doi: 10.1007/s40843-018-9408-3.

H. Jiang, J. Ma, and C. Li, “Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes,” Wiley Online Library, 2012, doi: 10.1002/adma.201104942.

R. R. Salunkhe, S.-H. Hsu, K. C. Wu, and Y. Yamauchi, “Large‐scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications,” ChemSusChem, vol. 7, no. 6, pp. 1551–1556, 2014, doi: 10.1002/cssc.201400147.

B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, “3D macroporous graphene frameworks for supercapacitors with high energy and power densities,” ACS Nano, vol. 6, no. 5, pp. 4020–4028, 2012, doi: 10.1021/nn3003345.

B. G. Choi et al., “High performance of a solid-state flexible asymmetric supercapacitor based on graphene films,” Nanoscale, vol. 4, no. 16, pp. 4983–4988, 2012, doi: 10.1039/c2nr30991b.

P.-C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano, vol. 4, no. 8, pp. 4403–4411, 2010, doi: 10.1021/nn100856y.

D.-W. Wang, F. Li, and H.-M. Cheng, “Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor,” J. Power Sources, vol. 185, no. 2, pp. 1563–1568, 2008, doi: 10.1016/j.jpowsour.2008.08.032.

D. Shi, L. Zhang, X. Yin, T. J. Huang, and H. Gong, “A one step processed advanced interwoven architecture of Ni(OH)2 and Cu nanosheets with ultrahigh supercapacitor performance,” J. Mater. Chem. A, vol. 4, no. 31, pp. 12144–12151, 2016, doi: 10.1039/C6TA03336A.

L. Zhang, C. Tang, and H. Gong, “Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance,” Nanoscale, vol. 6, no. 21, pp. 12981–12989, 2014, doi: 10.1039/C4NR04192E.

Y. Lu et al., “An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes,” J. Alloys Compd, vol. 714, pp. 63–70, 2017, doi: 10.1016/j.jallcom.2017.04.197.

J. Bhagwan, S. Rani, V. Sivasankaran, K. L. Yadav, and Y. Sharma, “Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio nanofibers of spinel-NiMn2O4,” Appl. Surf. Sci., vol. 426, pp. 913–923, 2017, doi: 10.1016/j.apsusc.2017.07.253.

J. Ahmed, M. Ubiadullah, N. Alhokbany, and S. M. Alshehri, “Synthesis of ultrafine NiMoO4 nano-rods for excellent electro-catalytic performance in hydrogen evolution reactions,” Mater. Lett., vol. 257, p. 126696, 2019, doi: 10.1016/j.matlet.2019.126696.

Y. Zhang et al., “NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials,” J. Renew. Sustain. Energy, vol. 10, no. 5, p. 054101, 2018, doi: 10.1063/1.5032271.

M. Jing et al., “Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage,” J. Power Sources, vol. 298, pp. 241–248, 2015, doi: 10.1016/j.jpowsour.2015.08.039.

B. Li, Y. Fu, H. Xia, and X. Wang, “High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material,” Mater. Lett., vol. 122, pp. 193–196, 2014, doi: 10.1016/j.matlet.2014.02.046.

X. Hu et al., “Facile and environmentally friendly synthesis of ultrathin nickel hydroxide nanosheets with excellent supercapacitor performances,” Nanoscale, vol. 8, no. 23, pp. 11797–11802, 2016, doi: 10.1039/C6NR02912D.

L. Chen, L. Mu, T. Ji, and J. Zhu, “Boosting energy efficiency of nickel cobaltite via interfacial engineering in hierarchical supercapacitor electrode,” J. Phys. Chem. C, vol. 120, no. 41, pp. 23377–23388, 2016, doi: 10.1021/acs.jpcc.6b07475.

A. C. Nkele and F. I. Ezema, “Diverse synthesis and characterization techniques of nanoparticles,” IntechOpen, 2020. doi: 10.5772/intechopen.94453.

R. M. Obodo et al., “Graphene oxide enhanced Co3O4/NiO composite electrodes for supercapacitive devices applications,” Appl. Surf. Sci. Adv., vol. 9, p. 100254, 2022, doi: 10.1016/j.apsadv.2022.100254.

A. C. Nkele et al., “Structural, optical and electrochemical properties of SILAR-deposited zirconium-doped cadmium oxide thin films,” Mater. Res. Express, vol. 6, no. 9, 2019, doi: 10.1088/2053-1591/ab31f5.

A. C. Nkele et al., “A study on titanium dioxide nanoparticles synthesized from titanium isopropoxide under SILAR-induced gel method: Transition from anatase to rutile structure,” Inorg. Chem. Commun., vol. 112, p. 107705, Feb. 2020, doi: 10.1016/j.inoche.2019.107705.

R. M. Obodo et al., “Effects of copper ion irradiation on CuyZn1-2y-xMny/GO supercapacitive electrodes,” J. Appl. Electrochem., vol. 51, no. 5, 2021, doi: 10.1007/s10800-021-01543-3.

A. C. Nkele, S. Ezugwu, M. Suguyima, and F. I. Ezema, “Structural and electronic properties of metal oxides and their applications in solar cells,” in Chemically Deposited Nanocrystalline Metal Oxide Thin Films, Springer, 2021, pp. 147–163, doi: 10.1007/978-3-030-68462-4_6.

A. C. Nkele et al., “Enhanced electrochemical property of SILAR-deposited Mn3O4 thin films decorated on graphene,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 9049–9058, Jul. 2020, doi: 10.1016/j.jmrt.2020.06.031.

R. Barik and P. P. Ingole, “Challenges and prospects of metal sulfide materials for supercapacitors,” Curr. Opin. Electrochem., vol. 21, pp. 327–334, 2020, doi: 10.1016/j.coelec.2020.03.022.

Y. Gao and L. Zhao, “Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors,” Chem. Eng. J., vol. 430, p. 132745, 2022, doi: 10.1016/j.cej.2021.132745.

X. Wang, C. Hao, J. Zhang, C. Ni, X. Wang, and Y. Shen, “Reasonable design and synthesis of nickel manganese sulfide nanoparticles derived from metal organic frameworks as electrode materials for supercapacitors,” J. Power Sources, vol. 539, p. 231594, Aug. 2022, doi: 10.1016/j.jpowsour.2022.231594.

L. Lu, Q. Xu, Y. Chen, Y. Zhou, T. Jiang, and Q. Zhao, “Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors,” J. Energy Storage, vol. 49, p. 104073, May 2022, doi: 10.1016/j.est.2022.104073.

U. Javed et al., “Heteroatom-doped reduced graphene oxide integrated with nickel-cobalt phosphide for high-performance asymmetric hybrid supercapacitors,” Mater. Today Nano, vol. 18, p. 100195, 2022, doi: 10.1016/j.mtnano.2022.100195.

M. Xie, M. Zhou, Y. Zhang, C. Du, J. Chen, and L. Wan, “Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high‐performance asymmetric supercapacitors,” J. Colloid Interface Sci., vol. 608, pp. 79–89, 2022, doi: 10.1016/j.jcis.2021.09.159.

K. S. Anuratha, Y.-Z. Su, M.-K. Huang, C.-K. Hsieh, Y. Xiao, and J.-Y. Lin, “High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets,” J. Alloys Compd, vol. 897, p. 163031, 2022, doi: 10.1016/j.jallcom.2021.163031.

F. Xiang, Y. Dong, X. Yue, Q. Zheng, and D. Lin, “High-capacity CoP-Mn3P nanoclusters heterostructures derived by Co2MnO4 as advanced electrodes for supercapacitors,” J. Colloid Interface Sci., vol. 611, pp. 654–661, Apr. 2022, doi: 10.1016/j.jcis.2021.12.118.

Z. Ji et al., “Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors,” J. Colloid Interface Sci., vol. 609, pp. 503–512, 2022, doi: 10.1016/j.jcis.2021.11.055.

J. Xu, A. Schulte, H. Schönherr, X. Jiang, and N. Yang, “Hierarchical carbon nanofibers@nickel phosphide nanoparticles for high‐performance supercapacitors,” Small Structures, vol. 3, no. 2, p. 2100183, 2022, doi: 10.1002/sstr.202100183.




How to Cite

A. C. Nkele, “Recent Advances in Materials for Supercapacitors”, NH, vol. 1, p. 32 pages, 2022.



Review Article