Room Temperature Surface Bio-Sulfurisation via Natural Sativum Annilin and Bioengineering of Nanostructured CuS/Cu2S

Authors

DOI:

https://doi.org/10.25159/NanoHorizons.45486dad4f94

Keywords:

surface bioengineering, surface nanostructuring, green/bio-sulfurisation, multifunctionality, copper sulfide, Cu2-XS, Allium sativum L

Abstract

In this contribution, we report, for the first time, on the surface bio-sulfurisation of metallic surfaces at room temperature via natural sativum annilin. More precisely, this bio-sulfurisation is validated on bioengineered nanostructured Cu2-XS surfaces using natural organosulfur compounds emitted from Sativum allium L. as efficient sulfurisation chemical agents. It is validated that virgin copper surfaces can be sulfurised at room temperature without adding any extra chemical or physical processes. In addition to the validation of the green sulfurisation process of the copper surface, the bioengineered Cu2-XS exhibited a multiscale 1-D tubular morphology with Cu2-XS nanotubules and nanocones. Such a nanostructured Cu2-XS surface exhibited an excessive optical selectivity, a superhydrophobicity response in addition to a remarkable site selective mercury adsorption.

Metrics

Metrics Loading ...

Author Biographies

G. G. Welegergs, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Department of Chemistry, Debre Berhan University, Ethiopia.

N. Numan, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

S. Dube, University of South Africa

Department of Chemistry, University of South Africa

Z Nuru, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Department of Physics, Adigrat University, Ethiopia.

N Botha, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

S. Azizi, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

K Cloete, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

M Akbari, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa

R Morad, University of South Africa

 

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

M. G. Tsegay, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

H.G. Gebretinsae, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

[Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

C. Mtshali, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

S. Khumalo, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Fabian I. Ezema, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

A Krief, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Department of Chemistry, University of Namur, Belgium

A Gibaud, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Institute of Molecules and Materials, Le Mans University, France.

M Henini, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Department of Physics and Astronomy, University of Nottingham, UK.

M. P. Seopela, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

Department of Chemical Sciences, University of Johannesburg, South Africa.

M. Chaker, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

INRS-Energy and Materials, Canada.

Malek Maaza, University of South Africa

UNESCO–UNISA Africa Chair in Nanoscience–Nanotechnology, College of Graduate Studies, University of South Africa.

Nanosciences African Network iThemba LABS, National Research Foundation, South Africa.

References

L. S. Whiteside and R. J. Goble, “Structural and compositional changes in copper sulfide during leaching and dissolution,” Can. Mineral., vol. 24, no. 2, pp. 247–258, 1986.

A. F. Wells, Structural Inorganic Chemistry. 5th ed. Oxford Science Publications, 1984.

R. J. Goble, “Copper sulfides from Alberta; yarrowite Cu9S8 and spionkopite Cu39S28,” Can. Mineral., vol. 18, no. 4, pp. 511–518, 1980.

R. J. Goble and G. Robinson, “Geerite, Cu1.60S, a new copper sulfide from Dekalb Township, New York,” Can. Mineral., vol. 18, no. 4, pp. 519–523, 1980.

G. Zhenzhen et al., “Super-hydrophobic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination,” Semicond. Sci. Technol., pp. 1361–6641, 2017.

C. Chan et al., “High-performance lithium battery anodes using CuS nanowires,” Nat. Nanotechnol., vol. 3, pp. 31–35, 2008, doi: https://doi.org/https://doi.org/10.1038/nnano.2007.411

R. W. Potter, “An electrochemical investigation of the system copper–sulfur.” Econ. Geol., vol. 72, no. 8, p. 1524, 1977, doi: https://doi.org/https://doi.org/10.2113/gsecongeo.72.8.1524

H. T. Evans, “The crystal structures of low chalcocite and djurleite,” Z. Kristallogr., vol. 150, pp. 299–320, 1979.

G. Will, E. Hinze, and A. R. M. Abdelrahman, “Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 C under controlled sulfur partial pressure,” Eur. J. Mineral., vol. 14, no. 3, pp. 591–598, 2002, doi: https://doi.org/https://doi.org/10.1127/0935-1221/2002/0014-0591

K. Koto and N. Morimoto, “The crystal structure of anilite,” Acta Cryst., vol. B26, pp. 915–924, 1970, doi: https://doi.org/https://doi.org/10.1107/S0567740870003370

F. Grønvold and E. F. Westrum, “Thermodynamics of copper sulfides I. Heat capacity and thermodynamic properties of copper(I) sulfide, Cu2S, from 5 to 950 K,” J. Chem. Thermodyn., vol. 19, no. 11, pp. 1183–1198, 1987, doi: https://doi.org/https://doi.org/10.1016/0021-9614(87)90056-5

H. T. Evans, “Crystal structure of low chalcocite,” Nat. Phys. Sci., vol. 232, pp. 69–70, 1971, doi: https://doi.org/https://doi.org/10.1038/physci232069a0

M. J. Buerger and B. J. Wuensch, “Distribution of atoms in high chalcocite, Cu2S,” Sci., vol. 141, no. 3577, pp. 276–277, 1963, doi: https://doi.org/https://doi.org/10.1126/science.141.3577.276

C. H. Chen-Ho Lai et al., “Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries,” J. Mater. Chem., vol. 20, pp. 6638–6645, 2010, doi: https://doi.org/https://doi.org/10.1039/c0jm00434k

Y. Wu, C. Wadia, W. L. Ma, B. Sadtler and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett., vol. 8, p. 2551, 2008.

A. B. F. Martinson, J. W. Elam and M. J. Pellin, “Atomic layer deposition of Cu2S for future application in photovoltaics,” Appl. Phys. Lett., vol. 94, p. 123107, 2009, doi: https://doi.org/https://doi.org/10.1063/1.3094131

S. C. Liufu, L. D. Chen, Q. Yao and F. Q. Huang, “Boosting the stable Na storage performance in 1D oxysulfide,” Adv. Energy Mater., vol. 9, no. 20, 2019, doi: https://doi.org/https://doi.org/10.1002/aenm.201900170

K. Sun et al., “Operando multi-modal synchrotron investigation for structural and chemical evolution of cupric sulfide (CuS) additive in Li-S battery,” Sci. Rep., vol. 7, p. 12976, 2017, doi: https://doi.org/https://doi.org/10.1038/s41598-017-12738-0

M. Basu, et al., “Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis,” Sci. Rep., vol. 6, p. 34738, 2016, doi: https://doi.org/10.1038/srep34738

K. V. Kravchyk et al., “Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries,” Sci. Rep., vol. 9, p. 7988, 2019, doi: https://doi.org/10.1038/s41598-019-43639-z

D-F. Zhang, H. Zhang, Y. Shang and L. Guo, “Stoichiometry-controlled fabrication of CuxS hollow structures with Cu2O as sacrificial templates,” Cryst. Growth Des., vol. 1, no. 9, pp. 3748–3753, 2011, doi: https://doi.org/10.1021/cg101283w

C. S. Kim, S. H. Choi and H. H. Bang. “New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: Composition-dependent electrocatalytic activity and stability,” ACS Appl. Mater. Interfaces, vol. 6, pp. 22078–22087, 2014, doi: https://doi.org/10.1021/am505473d

S. Couve, L. Gouskov, L. Szepessy, J. Vedel and E. Castel. “Resistivity and optical transmission of CuxS layers as a function of composition,” Thin Solid Films, vol. 15, no. 2, pp. 223–231, 1973, doi: https://doi.org/10.1016/0040-6090(73)90046-1

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu and C. Burda, “Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides,” J. Am. Chem. Soc., vol. 131, no. 12, pp. 4253–4261, 2009, doi: https://doi.org/10.1021/ja805655b

J. M. Luther, P. K. Jain, T. Ewers and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater., vol. 10, pp. 361–366, 2011, doi: https://doi.org/10.1038/nmat3004

L. Fan, R. Ma, Y. Yang, S. Chen and B. Lu, “Covalent sulfur for advanced room temperature sodium-sulfur batteries,” Nano Energy, vol. 28, pp. 304–310, 2016, doi: https://doi.org/10.1016/j.nanoen.2016.08.056

N. R. Kim et al., “Conversion reaction of copper sulfide based nanohybrids for sodium-ion batteries,” ACS Sustain. Chem. Eng., vol. 5, pp. 9802–9808, 2017, doi: https://doi.org/10.1021/acssuschemeng.7b01692

X. Zhang, G. Wang, A. Gu, Y. Wei and B. Fang, “CuS nanotubes for ultrasensitive nonenzymatic glucose sensors,” Chem. Commun., vol. 45, pp. 5945–5947, 2008, doi: https://doi.org/10.1039/b814725f

W. Du, X. Qian, X. Ma, Q. Gong, H. Cao and J. Yin. “Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets,” Chem., vol. 13, no. 11, pp. 3241–3247, 2007, doi: https://doi.org/10.1002/chem.200601368

X. Rui, H. Tan and Q. Yan, “Nanostructured metal sulfides for energy storage. Nanoscale, vol. 6, no. 17, pp. 9889–9924, 2014, doi: https://doi.org/10.1039/C4NR03057E

P. Roy and S. K. Srivastava, “Nanostructured copper sulfides: Synthesis, properties and applications,” CrystEngComm, vol. 17, no. 41, pp. 7801–7815, 2015, doi: https://doi.org/10.1039/C5CE01304F

K. B. Tang, D. Chen, Y. F. Liu, G. Z. Shen, H. G. Zheng and Y. T. Qian, “Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route,” J. Cryst. Growth, vol. 263, no. 1–4, pp. 232–236, 2004, doi: https://doi.org/10.1016/j.jcrysgro.2003.11.045

Q. Y. Lu, F. Gao and F. Y. Zhao, “One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process,” Nano Lett., vol. 2, no. 7, pp. 725–728, 2002, doi: https://doi.org/10.1021/nl025551x

S. H. Omar and N. A. Al-Wabel, “Organosulfur compounds and possible mechanism of garlic in cancer,” Saudi Pharm. J., vol. 18, pp. 51–58, 2010, doi: https://doi.org/10.1016/j.jsps.2009.12.007

C. A. Newall, L. A. Anderson and J. D. Phillipson, Herbal Medicines: A Guide for Health-Care Professionals. London: Pharmaceutical Press, 1996.

J. C. W. Folmer and F. Jellinek, “Structural and electronic instabilities of transition metal chalcogenides,” J. Less Common Met., vol. 76, no. 1–2, pp. 153–162, 1980, doi: https://doi.org/10.1016/0022-5088(80)90019-3

R. A. D. Pattrick et al., “The structure of amorphous copper sulfide precipitates: An X-ray absorption study,” J. Geochim. Cosmochim. Acta., vol. 61, no. 10, pp. 2023–2036, 1997, doi: https://doi.org/10.1016/S0016-7037(97)00061-6

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem., vol. 28, no. 8, pp. 988–994, 1936, doi: https://doi.org/10.1021/ie50320a024

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc., vol. 400, p. 546, 1944, doi: https://doi.org/10.1039/tf9444000546

E. Orlova D. Feoktistov and G. Kuznetzov, “Investigation of drop dynamic contact angle on copper surface,” EPJ Web of Conferences, vol. 82, p. 01053, 2015, doi: https://doi.org/10.1051/epjconf/20158201053

J. Liu and D. Xue, “Rapid and scalable route to CuS biosensors,” J. Mater. Chem., vol. 21, p. 223, 2011, doi: https://doi.org/10.1039/C0JM01714K

C. Ratanatawanate and A. Bui, “Rapid and scalable route to CuS biosensors,” J. Phys. Chem., vol. 115, p. 6175, 2011.

M. Maaza, B. D. Ngom, Z. Y. Nuru and S. Khamlich, “Surface–interface investigation and stability of cermet-based solar absorbers by grazing angle X-rays reflectometry: Pt-Al2O3 case,” Arab. J. Sci. Eng., vol. 39, no. 7, pp. 5825–5846, 2014, doi: https://doi.org/10.1007/s13369-014-1110-y

L. Kotsedi et al., “Femtosecond laser surface structuring of molybdenum thin films,” Appl. Surf. Sci., vol. 353, pp. 1334–1341, 2015, doi: https://doi.org/10.1016/j.apsusc.2015.08.047

A. Karoro et al., “Laser nanostructured Co nanocylinders-Al 2 O 3 cermets for enhanced & flexible solar selective absorbers applications,” Appl. Surf. Sci., vol. 347, pp. 679–684, 2015, doi: https://doi.org/10.1016/j.apsusc.2015.04.098

T. Siby, H. Owen and M. A. Zaeem, “Unveiling the role of atomic defects on the electronic, mechanical and elemental diffusion properties in CuS,” Scripta Materialia vol. 192, pp. 94–99, 2021, doi: https://doi.org/10.1016/j.scriptamat.2020.10.012

M. I. Zakirov et al., “Spectral-kinetic characteristics of ZnS phosphors obtained using the method of vapor transport synthesis in a closed system,” J. Appl. Spectrosc., vol. 82, p. 947, 2016, doi: https://doi.org/10.1007/s10812-016-0210-8

P. F. Smet, I. Moreels, H. Hens and D. Poelman, “Luminescence in sulfides: A rich history and a bright future,” Mater., vol. 3, pp. 2834–2883, 2010, doi: https://doi.org/10.3390/ma3042834

K. Ren et al., Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting,” Small., vol. 13, p. 1700867, 2017, doi: https://doi.org/10.1002/smll.201700867

L. Wang, A. N. Liang, H. Q. Chen, Y. Liu, B. B. Qian and J. Fu, “Ultrasensitive determination of silver ion based on synchronous fluorescence spectroscopy with nanoparticles,” Anal. Chim. Acta, vol. 616, p. 170, 2008, doi: https://doi.org/10.1016/j.aca.2008.04.027

J. B. F. Lloyd, “Synchronized excitation of fluorescence emission spectra,” Nature, vol. 231, p. 64, 1971, doi: https://doi.org/10.1038/physci231064a0

Z. Xiaojun and G. Wang, “Luminescent CuS nanotubes as silver ion probes,” Spectrochimica Acta Part A, vol. 72, pp. 1071–1075, 2009, doi: https://doi.org/10.1016/j.saa.2008.12.038

Á. Morales-García, J. He, A. L. Soares and H. A. Duarte, “Surfaces and morphologies of covellite (CuS) nanoparticles by means of ab initio atomistic thermodynamics,” CrystEngComm, vol. 19, no. 22, pp. 3078–3084, 2017, doi: https://doi.org/10.1039/C7CE00203C

P. Perdew, K. Burke and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. vol. 77, p. 3865, 1996, doi: https://doi.org/10.1103/PhysRevLett.77.3865

S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, A. Pasquarello and S. Baroni, “First-principles codes for computational crystallography in the Quantum-ESPRESSO package,” Z. Kristallogr., vol. 220, p. 574, 2005, doi: https://doi.org/10.1524/zkri.220.5.574.65062

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, p. 5188, 1976, doi: https://doi.org/10.1103/PhysRevB.13.5188

S. Grimme, J. Antony, S. Ehrlich and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements,” J. Chem. Phys., vol. 132, p. 154104, 2010, doi: https://doi.org/10.1063/1.3382344

C. C. Patiño-Morales et al., “Antitumor effects of natural compounds derived from Allium sativum on neuroblastoma: An overview,” Antioxidants, vol. 11, no. 1, p. 48, 2022, doi: https://doi.org/10.3390/antiox11010048

Downloads

Published

2023-04-27

How to Cite

[1]
G. G. Welegergs, “Room Temperature Surface Bio-Sulfurisation via Natural Sativum Annilin and Bioengineering of Nanostructured CuS/Cu2S”, NH, vol. 2, p. 27 pages, 2023.

Issue

Section

Review Article