Towards Unlocking/Tuning the Mott Transition Temperature in Alkaline-Doped Vanadium Oxide Thermochromic Coatings and Potential Green Air-Conditioning via Room Temperature VxOy-V-VxOy Layered Coatings




vanadium oxides, Thermochromism, Solar heat management, Smart windows, Infrared modulation, Room temperature, phase transition


In this contribution, we validate for the first time that the near infrared-infrared (NIR-IR) modulation of the optical transmission (DTTRANS = T(T<TMIT) - T(T>TMIT)) of vanadium oxide-based nanomaterials can be controlled or tuned via a genuine approach with a simultaneous drastic reduction of its Mott transition temperature TMIT. More accurately, we report a significant thermochromism in multilayered V2O5/V/V2O5 stacks equivalent to that of pure VO2 thin films but with a far lower transition temperature TMIT. Such a multilayered V2O5/V/V2O5 thermochromic system exhibited a net control or tunability of the optical transmission modulation in the NIR-IR (DTTRANS) via the nano-scaled thickness of the intermediate vanadium layer. In addition, the control of DTTRANS is accompanied by a noteworthy diminution of the Mott transition temperature TMIT from the bulk value of 68.8 °C to the range of 27.5–37.5 °C. The observed peculiar thermochromism in the multilayered V2O5/V/V2O5 is likely to be ascribed to a significant interfacial diffusion or an excessive interfacial stress/strain, and/or to an effective halide (Na, K, Ca) doping. This doping is driven by a significant diffusion from the borosilicate substrate surface towards the V2O5/V/V2O5 stacks. If the upscaling of this approach is validated, the current findings would contribute to advancing thermochromic nanomaterials and their applications in smart windows for managing solar heat and green air-conditioning technologies.


Metrics Loading ...

Author Biographies

Nagla Numan, iThemba Laboratory

iThemba LABS-National Research Foundation

University of South Africa

Cape Peninsula University of Technology

Aline Simo, University of South Africa

iThemba LABS-National Research Foundation

University of South Africa


International Energy Agency, “Building envelopes,” n.d. [Online]. Available:

D. M. Kammen and D. A. Sunter, “City-integrated renewable energy for urban sustainability,” Sci, vol. 352, pp. 922–928, 2016, doi: 10.1126/science.aad9302. DOI:

J. Rogelj et al., “Energy system transformations for limiting end-of-century warming to below 1.5 °C,” Nature Clim. Change, vol. 5, pp. 519–527, 2015, doi: 10.1038/nclimate2572. DOI:

C. Sui et al., “Dynamic electrochromism for all-season radiative thermoregulation,” Nat. Sustain., vol. 6, pp. 428–437, 2023, doi: 10.1038/s41893-022-01023-2. DOI:

K. Tang et al., “Temperature-adaptive radiative coating for all-season household thermal regulation,” Sci., vol. 374, pp. 1504–1509, 2021, doi: 10.1126/science.abf7136. DOI:

N. N. Shi et al., “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Sci, vol. 349, pp. 298–301, 2015, doi: 10.1126/science.aab3564. DOI:

C. Jorgensen, “Electrochromic and thermochromic materials for solar energy applications with emphasis on niobium and vanadium oxides,” Lawrence Berkeley, Berkeley, CA, USA, Laboratory Report (LBL-18299), August 1984.

C. G. Granqvist, Handbook of Inorganic Chromogenic Materials, Amsterdam: Elsevier, 1995.

X. Li et al., “Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings,” Nat. Commun., vol. 11, p. 6101, 2020, doi: 10.1038/s41467-020-19790-x. DOI:

B. P. Jelle, S. E. Kalnæs and T. Gao, “Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives,” Energy Build., vol. 96, pp. 329–356, 2015, doi: 10.1016/j.enbuild.2015.03.024. DOI:

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3, p. 34, 1959, doi: 10.1103/PhysRevLett.3.34. DOI:

D. Adler, “Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides,” Rev. Mod. Phys., vol. 40, p. 714, 1968, doi: 10.1103/RevModPhys.40.714. DOI:

S. Wang et al., “Scalable thermochromic smart windows with passive radiative cooling regulation,” Sci., vol. 374, pp. 1501–1504, 2021, doi: 10.1126/science.abg0291. DOI:

S. Chen et al., “The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: An optimization and first principle study,” Phys. Chem. Chem. Phys., vol. 15, p. 17537, 2013, doi: 10.1039/c3cp52009a. DOI:

L. Pellegrino et al., “Multistate memory devices based on free‐standing VO2/TiO2 microstructures driven by joule self‐heating,” Adv. Mater., vol. 24, no. 21, pp. 2929–2934, 2012, doi: 10.1002/adma.201104669. DOI:

M. Jiang et al., “Improved luminous transmittance and diminished yellow color in VO2 energy efficient smart thin films by Zn doping,” Ceram. Int., vol. 40, no. 4, pp. 6331–6334, 2013, doi: 10.1016/j.ceramint.2013.10.083. DOI:

Y. Wu et al., “Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping,” Sci. Rep., vol. 5, p. 9328, 2015, doi: 10.1038/srep09328. DOI:

D. Zhang et al., “VO2 thermochromic films on quartz glass substrate grown by RF plasma assisted oxide molecular beam epitaxy,” Mater., vol. 10, p. 314, 2017, doi: 10.3390/ma10030314. DOI:

L. Lu et al., “Effect of Fe doping on thermochromic properties of VO2 films,” J. Mater. Sci.: Mater. Electron., vol. 29, p. 5501, 2018, doi: 10.1007/s10854-018-8518-1. DOI:

D. Vernardou, D. Louloudakis, E. Spanakis, N. Katsarakis and E. Koudoumas, “Thermochromic amorphous VO2 coatings grown by APCVD using a single-precursor,” Sol. Energy Mater. Sol. Cells, vol. 128, pp. 36, 2014, doi: 10.1016/j.solmat.2014.04.033. DOI:

C. Drosos and D. Vernardou, “Advancements, challenges and prospects of chemical vapour pressure at atmospheric pressure on vanadium dioxide structures,” Mater., vol. 11, p. 384, 2018, doi: 10.3390/ma11030384. DOI:

D. A. Vinichenko, V. P. Zlomanov, V. A. Vasilev, D. S. Seregin and O. Y. Berezina, “Synthesis of vanadium dioxide films by a modified sol-gel process,” Inorg. Mater., vol. 47, p. 3, 2011, doi: 10.1134/S0020168511030216. DOI:

G. Pan, J. Yin, K. Ji, X. Li, X. Cheng and H. Jin, “Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method,” Sci. Rep., vol. 7, p. 6132, 2017, doi: 10.1038/s41598-017-05229-9. DOI:

R. E. Marvel, K. Appavoo, B. K. Choi, J. Nag and R. F. Haglund, “Electron beam deposition of vanadium dioxide thin films,” Appl. Phys. A, vol. 111, p. 975–981, 2013, doi: 10.1007/s00339-012-7324-5. DOI:

R. E. Marvel, R. R. Harl, V. Craciun, B. R. Rogers and R. F. Haglund, “Influence of deposition process and substrate on the phase transition of vanadium dioxide thin films, Acta Mater., vol. 91, p. 217, 2015, doi: 10.1016/j.actamat.2015.03.009. DOI:

X. Tan et al., “Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping,” Sci. Rep., vol. 2, 2012, doi: 10.1038/srep00466. DOI:

S. Long et al., “Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability,” Appl. Surf. Sci., vol. 441, pp. 764–772, 2018, doi: 10.1016/j.apsusc.2018.02.083. DOI:

C. M. Sella, O. Nemraoui, N. Renard, & Y. Sampeur, “Preparation, characterization and properties of sputtered electrochromic and thermochromic devices,” Surf. Coat. Technol., vol. 98, no. 1–3, pp. 1477–1482, 1998. DOI:

M. J. Miller and J. Wang, “Multilayer ITO/VO2/TiO2 thin films for control of solar and thermal spectra,” Sol. Energy Mater. Sol. Cells, vol. 154, pp. 88–93, 2016, doi: 10.1016/j.solmat.2016.04.044. DOI:

J. Zheng, S. Bao and P. Jin, “TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions, Nano Ener., vol. 11, pp. 136–145, 2015, doi: 10.1016/j.nanoen.2014.09.023. DOI:

C. Wang, L. Zhao, Z. Liang, B. Dong, L. Wan and S. Wang, “New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and super-hydrophobicity,” Sci. Technol. Adv. Mater., vol. 18, no. 1, pp. 563–573, 2017, doi: 10.1080/14686996.2017.1360752. DOI:

B. S. Khanyile, C. Mtshali, I. G. Madiba, A. Simo, N. Numan and K. Kaviyarasu, “Effect of varying the vanadium thickness layer of V2O5/V/V2O5 film on its microstructural and thermochromic properties,” J. Vac. Sci. Technol. A, vol. 37, no. 5, p. 051511, 2019, doi: 10.1116/1.5096249. DOI:

L. Zhou, M. Xu, X. Song, P. Li, X. Qiang and J. Liang, “Modified color for VO2/Au/VO2 sandwich structure -based smart windows,” Appl. Phys. A, vol. 124, p. 505, 2018, doi: 10.1007/s00339-018-1927-4. DOI:

Y.-H. Han et al., “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, no. 1–2, pp. 260–264, 2003, doi: 10.1016/S0040-6090(02)01263-4. DOI:

Y. Zhao, R. Xu, X. Zhang, X. Hu, R. J. Knize and Y. Lu, “Simulation of smart windows in the ZnO/VO2/ZnS sandwiched structure with improved thermochromic properties,” Ener. Build., vol. 66, pp. 545–552, 2013, doi: 10.1016/j.enbuild.2013.07.071. DOI:

S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao and P. Jin, “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability,” RSC Adv., vol. 108, p. 106435, 2016, doi: 10.1039/C6RA23504B. DOI:

O. Sakata & M. Nakamura, “Grazing incidence X-ray diffraction,” in Surface Science Techniques. Springer, 2013, pp. 165–190. DOI:

Y. Shvyd’ko et al., “Near-100% bragg reflectivity of X-rays,” Nat. Photon, vol. 5, pp. 539–542, 2011, doi: 10.1038/nphoton.2011.197. DOI:

N. Paul et al., “Surface distortion of Fe dot-decorated TiO2 nanotubular templates using time-of-flight grazing incidence small angle scattering,” Sci. Rep., vol. 10, p. 4038, 2020, doi: 10.1038/s41598-020-60899-2. DOI:

A. Tselev et al., Mesoscopic metal-insulator transition at ferroelastic domain walls in VO2, ACS Nano., vol. 4, no. 8, pp. 4412–4419, 2010, doi: 10.1021/nn1004364. DOI:

A. Tselev et al., “Symmetry relationship and strain-induced transitions between insulating M1 and M2 and metallic R phases of vanadium dioxide,” Nano Lett., vol. 10, no. 11, pp. 4409–4416, 2010, doi: 10.1021/nl1020443. DOI:

J. Wei, Z. Wang, W. Chen and D.H. Cobden, “New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams,” Nat. Nanotechnol., vol. 4, no. 7, pp. 420–424, 2009, doi: 10.1038/nnano.2009.141. DOI:

T. Favaloro et al., “Direct observation of nanoscale peltier and joule effects at metal-insulator domain walls in vanadium dioxide nanobeams,” Nano Lett., vol. 14, no. 5, pp. 2394–2400, 2014, doi: 10.1021/nl500042x. DOI:

E. K. H. Salje and S. Kustov, “Dynamic domain boundaries: Chemical dopants carried by moving twin walls,” Phys. Chem. Chem. Phys., vol. 25, no. 3, pp. 1588–1601, 2023, doi: 10.1039/D2CP04908B. DOI:

K. Nagashima, T. Yanagida, H. Tanaka and T. Kawai, “Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films,” Phys. Rev. B, vol. 74, p. 172106, 2006, doi: 10.1103/PhysRevB.74.172106. DOI:

C. V. Ramana, R. J. Smith, O. M. Hussain and C. M. Julien, “On the growth mechanism of pulsed-laser deposited vanadium oxide thin films,” Mater. Sci. Eng. B, vol. 111, pp. 218–225, 2004, doi: 10.1016/j.mseb.2004.04.017. DOI:

L. Mathevula et al., “Thermochromic VO2 on Zinnwaldite mica by pulsed laser deposition,” Appl. Surf. Sci., vol. 314, pp. 476-480, 2014, doi: 10.1016/j.apsusc.2014.07.035. DOI:

I-H. Hwang, C-I. Park, S. Yeo, C-J. Sun and S-W. Han, “Decoupling the metal insulator transition and crystal field effects of VO2. Sci. Rep., vol. 11, p. 3135, 2021, doi: 10.1038/s41598-021-82588-4. DOI:

J. Planer, F. Mittendorfer and J. Redinger, “First principles studies of the electronic and structural properties of the rutile VO2 (110) surface and its oxygen-rich terminations,” J. Phys. Condens., vol. 33, no. 47, p. 475002, 2021, doi: 10.1088/1361-648X/ac2203. DOI:

E. Mohebbi, E. Pavoni, D. Mencarelli, P. Stipa, L. Pierantoni and E. Laudadio, “Insights into first-principles characterization of the monoclinic VO2 (B) polymorph via DFT + U calculation: Electronic, magnetic and optical properties,” Nanoscale Adv., vol. 17, no. 4, pp. 3634–3646, 2022, doi: 10.1039/D2NA00247G. DOI:

S. Zhang, J. Y. Chou and L. J. Lauhon, “Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam,” Nano Lett., vol. 9, no. 12, p. 4527–4532, 2009, doi: 10.1021/nl9028973. DOI:

E. Strelcov, A. V. Davydov, U. Lanke, C. Watts and A. Kolmakov, “In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO2 nanowires and nanoplatelets,” ACS Nano, vol. 5, no. 4, pp. 3373–3384, 2011, doi: 10.1021/nn2007089. DOI:

S. Zhang, I. S. Kim and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett., vol. 11, no. 4, pp. 1443–1447, 2011, doi: 10.1021/nl103925m. DOI:

A. S. Kadari et al., “Growth and characterization of transparent vanadium doped zinc oxide thin films by means of a spray pyrolysis process for TCO application,” J. Sol-Gel Sci. Technol., vol. 103, pp. 691–703, 2022, doi: 10.1007/s10971-022-05875-0. DOI:




How to Cite

S. Khanyile, “Towards Unlocking/Tuning the Mott Transition Temperature in Alkaline-Doped Vanadium Oxide Thermochromic Coatings and Potential Green Air-Conditioning via Room Temperature VxOy-V-VxOy Layered Coatings”, NH, vol. 2, p. 26 pages, 2023.



Received 2023-05-02
Accepted 2023-09-01
Published 2023-11-02