Degradable Green Polymers, Green Nanopolymers and Green Nanocomposites Derived from Natural Systems: Statistics and Headways




degradable polymer, nanopolymer, green, nanocomposite, electronics, packaging, biomedical


Nowadays, actively researching and developing degradable green materials are efficient means to move towards the future advanced technologies and industries. In this article, we review the state of the art in important aspects of degradable green polymers especially green nanopolymers from natural sources and derived nanomaterials. Consequently, the fundamentals, cataloguing and properties of degradable green polymers or green nanopolymers obtained from natural resources have been presented. Green nanopolymers and derivative green nanocomposites are natural degradable materials. In this article, we also deliver numerous technological applications of the degradable green nanopolymers and derived materials such as transient electronics, film/coating and membrane/packaging, environmental protection and sustainability, and biomedical applications. The resulting green nanocomposites have been found effective to resolve current ecological issues. Moreover, the challenges and future of the natural degradable green nanopolymers and green nanocomposites have been investigated. However, the research and advancement of technical degradable materials with industrial and commercial applications yet have a
long way to go.


Metrics Loading ...

Author Biographies

Ayesha Kausar, Northwestern Polytechnical University

NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, China.

UNESCO–UNISA Africa Chair in Nanoscience and Nanotechnology, iThemba LABS, South Africa.

NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Pakistan.

Ishaq Ahmad, Northwestern Polytechnical University

NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, China.

UNESCO–UNISA Africa Chair in Nanoscience and Nanotechnology, iThemba LABS, South Africa.

NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Pakistan.


R. Ilyas et al., “Introduction to biofiller-reinforced degradable polymer composites,” in Biofiller-Reinforced Biodegradable Polymer, Composites, R. Jumaidin, S. M. Sapuan and H. Ismail, Eds., Boca Raton, FL, USA: CRC press, 2020. pp. 1–23. DOI:

M. Alidadykhah, H. Peyman, H. Roshanfekr, S. Azizi and M. Maaza, “Functionalization and modification of polyethylene terephthalate polymer by AgCl nanoparticles under ultrasound irradiation as bactericidal,” ACS Omega, vol. 7, no. 23, pp. 19141–19151, 2022, doi: 10.1021/acsomega.1c07082. DOI:

P. Andami et al., “Optimization of biodiesel production from sunflower oil transesterification using Ca-K/Al2O3 nanocatalysts,” Int. J. Eng., vol. 35, no. 2, pp. 351–359, 2022, doi: 10.5829/IJE.2022.35.02B.11. DOI:

I. Surya et al., “Hydrophobicity and biodegradability of silane-treated nanocellulose in biopolymer for high-grade packaging applications,” Polymers, vol. 14, no.19, p. 4147, 2022, doi: 10.3390/polym14194147. DOI:

P. Purnama, M. Samsuri and I. Iswaldi, “A review on fully bio-based materials development from polylactide and cellulose nanowhiskers,” Polymers, vol. 14, no. 19, p. 4009, 2022, doi: 10.3390/polym14194009. DOI:

D. P. Sebuso et al., “Green synthesis of multilayer graphene/ZnO nanocomposite for photocatalytic applications,” J. Alloys Compd, vol. 900, p. 163526, 2022, doi: 10.1016/j.jallcom.2021.163526. DOI:

T. S. Aldeen, H. E. A. Mohamed and M. Maaza, “ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity,” J. Phys. Chem. Solids, vol. 160, p. 110313, 2022, doi: 10.1016/j.jpcs.2021.110313. DOI:

M. Tsegay, H. G. Gebretinsae, J. Sackey, M. Maaza and Z. Y. Nuru, “Green synthesis of khat mediated silver nanoparticles for efficient detection of mercury ions,” Mater. Today: Proceedings, vol. 36, no. 2, pp. 368–373, 2021, doi: 10.1016/j.matpr.2020.04.217. DOI:

S. K. Noukelag, C. J. Arendse and M. Maaza, “Biosynthesis of hematite phase α-Fe2O3 nanoparticles using an aqueous extract of Rosmarinus officinalis leaves, Mater. Today: Proceedings, vol. 43, no. 6, pp. 3679–3683, doi: 10.1016/j.matpr.2020.10.977. DOI:

A. G. Kaningini, A. M. Nelwamondo, S. Azizi, M. Maaza and K. C. Mohale, “Metal nanoparticles in agriculture: A review of possible use,” Coatings, vol. 12, no. 10, p. 1586, 2022, doi: 10.3390/coatings12101586. DOI:

K. Ssekatawa et al., “Green strategy-based synthesis of silver nanoparticles for antibacterial applications,” Front. Nanotechnol., vol. 3, p. 59. 2021, doi: 10.3389/fnano.2021.697303. DOI:

L. C. Razanamahandry et al., “Removal of free cyanide by a green photocatalyst ZnO nanoparticle synthesized via Eucalyptus globulus leaves,” in Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment, E. Fosso-Kankeu, S. Pandey and S. S. Ray, Eds. Scrivener, 2020, pp. 271–288, doi: 10.1002/9781119631422.ch9. DOI:

A.C. Nwanya, S. Botha, F. I. Ezema and M. Maaza, “Functional metal oxides synthesized using natural extracts from waste maize materials,” CRGSC, vol. 4, p. 100054, 2021, doi: 10.1016/j.crgsc.2021.100054. DOI:

H. Andrianiaina, L. C. Razanamahandry, J. Sackey, R. Ndimba, S. Khamlich and M. Maaza, “Synthesis of graphene sheets from graphite flake mediated with extracts of various indigenous plants from Madagascar,” Mater. Today: Proceedings, vol. 36, no. 2, pp. 553–558, 2021, doi: 10.1016/j.matpr.2020.05.327. DOI:

F. T. Thema et al., “ZnO doped graphite nanocomposite via Agathosma Betulina natural extract with improved bandgap and electrical conductivity: Experimental investigation,” in New Visions in Science and Technology Vol. 1, S. M. Lawan, Ed. BP International, 2021, pp. 114–122. doi: 10.9734/bpi/nvst/v1/3545F. DOI:

S. G. Nukala, I. Kong, A. B. Kakarla, K. Y. Tshai and W. Kong, “Preparation and characterisation of wood polymer composites using sustainable raw materials,” Polymers, vol. 14, no. 15, P. 3183, 2022, doi: 10.3390/polym14153183. DOI:

X. Wang et al., “Effects of the combined application of trimethylated chitosan and carbodiimide on the biostability and antibacterial activity of dentin collagen matrix,” Polymers, vol. 14, no. 15, p. 3166, 2022, doi: 10.3390/polym14153166. DOI:

K. K. Fu, Z. Wang, J. Dai, M. Carter and L. Hu, “Transient electronics: Materials and devices,” Chem. Mater., vol. 28, no. 11, pp. 3527–3539, 2016, doi: 10.1021/acs.chemmater.5b04931. DOI:

A. Alam et al., “Silver nanoparticles biosynthesized from secondary metabolite producing marine actinobacteria and evaluation of their biomedical potential,” Antonie van Leeuwenhoek, vol. 114, pp. 1497–1516, 2021, doi: 10.1007/s10482-021-01616-5. DOI:

M. Abdur Rahman, S. Haque, M. M. Athikesavan and M. B. Kamaludeen, “A review of environmental friendly green composites: Production methods, current progresses, and challenges,” ESPR, vol. 30, pp. 16905–16929, 2023, doi: 10.1007/s11356-022-24879-5. DOI:

D. Zhao and Y. Liu, “Cascade polymer degradation on the trigger,” Synfacts, vol. 18, no. 10, p. 1084, 2022, doi: 10.1055/s-0041-1738609. DOI:

G. Swift, “Directions for environmentally biodegradable polymer research,” Acc. Chem. Res., vol. 26, no. 3, pp. 105–110, 1993 doi: 10.1021/ar00027a005. DOI:

E. Díaz-Montes, “Polysaccharides: Sources, characteristics, properties, and their application in biodegradable films,” Polysaccharides, vol. 3, no. 3, pp. 480–501, 2022, doi: 10.3390/polysaccharides3030029. DOI:

A. Senthilkumaran, A. Babaei-Ghazvini, M. T. Nickerson and B. Acharya, “Comparison of protein content, availability, and different properties of plant protein sources with their application in packaging,” Polymers vol. 14, no. 5, p. 1065, 2022, doi: 10.3390/polym14051065. DOI:

H. J. Kim, A. Kim and K. Miyata, “Synthetic molecule libraries for nucleic acid delivery: Design parameters in cationic/ionizable lipids and polymers,” Drug Metab. Pharmacokinet., vol. 42, p. 100428, 2022, doi: 10.1016/j.dmpk.2021.100428. DOI:

E. Joseph, P. Tohidifar, C. T. Sarver, R. I. Mackie and C. V. Rao, “Fundamentals of polymer biodegradation mechanisms,” in Biodegradable Polymers in the Circular Plastics Economy, M. Dusselier and J. Lange, Eds. Wiley, 2022, pp. 17–58, doi: 10.1002/9783527827589.ch2. DOI:

A. Bher, P. C. Mayekar, R. A. Auras and C. E. Schvezov, “Biodegradation of biodegradable polymers in mesophilic aerobic environments,” Int. J. Mol. Sci., vol. 23, no. 20, p. 12165, 2022, doi: 10.3390/ijms232012165. DOI:

Z. Z. Siew, E. W. C. Chan and C. W. Wong, “Anti‐browning active packaging: A review on delivery mechanism, mode of action, and compatibility with biodegradable polymers,” J. Food Process. Preserv., vol. 46, no. 12, p. e17216, 2022, doi: 10.1111/jfpp.17216. DOI:

E. A. Ismail, M. Faya, E. Amuhaya, C. A. Omolo and T. Govender, “Biodegradable polymers: Synthesis to advanced biomedical applications,” in Conducting Polymers, R. K. Gupta, Ed. Boca Raton: CRC Press, 2022, pp. 81–100, doi: 10.1201/9781003205418-6. DOI:

A. Basanth, N. Mayilswamy and B. Kandasubramanian, “Bone regeneration by biodegradable polymers,” Polym-Plast. Tech. Mat., vol. 61, no. 8, pp. 816–845, 2022, doi: 10.1080/25740881.2022.2029886. DOI:

T. Aziz et al., “Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field,” J. Appl. Polym. Sci., vol. 139, no. 29, p. e52624, 2022, doi: 10.1002/app.52624. DOI:

Y. Zhu, W. Liu and T. Ngai, “Polymer coatings on magnesium‐based implants for orthopedic applications,” J. Polym. Sci., vol. 60, no. 1, pp. 32–51, 2022, doi: 10.1002/pol.20210578. DOI:

I. R. S. Vieira, A. P. A. de Carvalho and C. A. Conte‐Junior, “Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications,” Compr. Rev. Food Sci. Food Saf., vol. 21, no. 4, pp. 3673–3716, 2022, doi: 10.1111/1541-4337.12990. DOI:

M. A. M. Akhir and M. Mustapha, “Formulation of biodegradable plastic mulch film for agriculture crop protection: A review,” Polym. Rev., vol. 62, no. 4, pp. 890–918, 2022, doi: 10.1080/15583724.2022.2041031. DOI:

A. Uva, A. Lin, J. Babi and H. Tran, “Bioderived and degradable polymers for transient electronics,” J. Chem. Technol. Biotechnol., vol. 97, no. 4, pp. 801–809, 2022, doi: 10.1002/jctb.6790. DOI:

I. C. Garretson, M. Mani, S. Leong, K. W. Lyons and K. R. Haapala, “Terminology to support manufacturing process characterization and assessment for sustainable production,” J. Clean. Prod., vol. 139, pp. 986–1000, 2016, doi: 10.1016/j.jclepro.2016.08.103. DOI:

A. L. Dannenberg, H. Frumkin and R. J. Jackson, Eds, Making Healthy Places: Designing and Building for Health, Well-Being, and Sustainability. Washington, DC, USA: Island Press, 2011, doi: 10.5822/978-1-61091-036-1. DOI:

I. Montiel and J. Delgado-Ceballos, “Defining and measuring corporate sustainability: Are we there yet?” Organ. Environ., vol. 27, no. 2, pp. 113–139, 2014, doi: 10.1177/1086026614526413. DOI:

T. P. Haider, C. Völker, J. Kramm, K. Landfester and F. R. Wurm, “Plastics of the future? The impact of biodegradable polymers on the environment and on society,” Angew. Chem., vol. 58, no. 1, pp. 50–62, 2019, doi: 10.1002/anie.201805766. DOI:

C. Guo and H. Guo, “Progress in the degradability of biodegradable film materials for packaging,” Membranes, vol. 12, no. 5, p. 500, 2022, doi: 10.3390/membranes12050500. DOI:

A. P. Kumar, D. Depan, N. S. Tomer and R. P. Singh, “Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives,” Prog. Polym. Sci., vol. 34, no. 6, pp. 479–515, 2009, doi: 10.1016/j.progpolymsci.2009.01.002. DOI:

K. Amulya, R. Katakojwala, S. Ramakrishna and S. V. Mohan, “Low carbon biodegradable polymer matrices for sustainable future,” JCOMC, vol. 4, p. 100111, 2021, doi: 10.1016/j.jcomc.2021.100111. DOI:

R. Song, M. Murphy, C. Li, K. Ting, C. Soo and Z. Zheng, “Current development of biodegradable polymeric materials for biomedical applications,” Drug design, development and therapy, vol. 12, pp. 3117–3145, 2018, doi: 10.2147/DDDT.S165440. DOI:

S. S. Panchal and D. V. Vasava, “Biodegradable polymeric materials: Synthetic approach,” ACS Omega, vol. 5, no. 9, pp. 4370–43792020, doi: 10.1021/acsomega.9b04422. DOI:

S. RameshKumar, P. Shaiju, K. E. O’Connor KE and R. Babu, “Bio-based and biodegradable polymers—State-of-the-art, challenges and emerging trends,” Curr. Opin. Green Sustain. Chem., vol. 21, pp. 75–81, 2020, doi: 10.1016/j.cogsc.2019.12.005. DOI:

M. T. Zumstein et al., “Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass,” Sci. Adv., vol. 4, no. 7, p. eaas9024, 2018, doi: 10.1126/sciadv.aas9024. DOI:

B. Laycock et al., “Lifetime prediction of biodegradable polymers,” Prog. Polym. Sci., vol. 71, pp. 144–189, 2017, doi: 10.1016/j.progpolymsci.2017.02.004. DOI:

K. Ishizu, K. Tsubaki, A. Mori and S. Uchida, “Architecture of nanostructured polymers,” Prog. Polym. Sci., vol. 28, no. 1, pp. 27–54, 2003, doi: 10.1016/S0079-6700(02)00025-4. DOI:

L. Chronopoulou, I. Fratoddi, C. Palocci, I. Venditti and M. V. Russo, “Osmosis based method drives the self-assembly of polymeric chains into micro- and nanostructures,” Langmuir, vol. 25, no. 19, pp. 11940–11946, 2009, doi: 10.1021/la9016382. DOI:

D. Barnat-Hunek, M. Grzegorczyk-Frańczak and Z. Suchorab, “Surface hydrophobisation of mortars with waste aggregate by nanopolymer trietoxi-isobutyl-silane and methyl silicon resin,” Constr. Build. Mater., vol. 264, p. 120175, 2020, doi: 10.1016/j.conbuildmat.2020.120175. DOI:

W. T. S. Huck, “Nanostructured polymers,” Int. J. Nanotechnol., vol. 1, no. 1–2, pp. 119–129, 2004, doi: 10.1504/IJNT.2004.003722. DOI:

S. Singh and R. Ahmed, “Vital role of nanopolymers in drilling and stimulations fluid applications,” paper presented at the SPE annual technical conference and exhibition, Florence, Italy, September 2010, doi: 10.2118/130413-MS. DOI:

A. Larena, A. Tur and V. Baranauskas, “Classification of nanopolymers,” J. Phys.: Conf. Ser., vol. 100, p. 012023, 2008, doi: 10.1088/1742-6596/100/1/012023. DOI:

W. Ding et al., “Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction,” J. Am. Chem. Soc., vol. 137, no. 16, pp. 5414–5420, 2015, doi: 10.1021/jacs.5b00292. DOI:

A. A. A. Aljabali et al., “Nature bioinspired and engineered nanomaterials,” Fundamentals of Bionanomaterials, A. Barhoum, J. Jeevandam and M. K. Danquah, Eds. Elsevier, 2022, pp. 31–58, doi: 10.1016/B978-0-12-824147-9.00002-9. DOI:

R. L. Mikkelsen, “Using hydrophilic polymers to control nutrient release,” Fertil. Res., vol. 38, pp. 53–59, 1994, doi: 10.1007/BF00750062. DOI:

M. A. Jafar Mazumder, “A review of green scale inhibitors: Process, types, mechanism and properties,” Coatings, vol. 10, no. 10, p. 928, 2020, doi: 10.3390/coatings10100928. DOI:

J. D. P. Theodoro, G. F. Lenz, R. F. Zara and R. Bergamasco, “Coagulants and natural polymers: Perspectives for the treatment of water,” Plast. Polym. Technol., vol. 2, no. 3, pp. 55–62, 2013,

S. Ling et al., “Biopolymer nanofibrils: Structure, modeling, preparation, and applications,” Prog. Polym. Sci., vol. 85, pp. 1–56, 2018, doi: 10.1016/j.progpolymsci.2018.06.004. DOI:

D. Trache et al., “Nanocellulose: From fundamentals to advanced applications,” Front. Chem., vol. 8, p. 392, 2020, doi: 10.3389/fchem.2020.00392. DOI:

A. Tshikovhi, S. B. Mishra and A. K. Mishra, “Nanocellulose-based composites for the removal of contaminants from wastewater,” Int. J. Biol. Macromol., vol. 152, pp. 616–632, 2020, doi: 10.1016/j.ijbiomac.2020.02.221. DOI:

S. M. F. Kabir, P. P. Sikdar, B. Haque, M. A. R. Bhuiyan, A. Ali and M. N. Islam, “Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications,” Progr. Biomat., vol. 7, pp. 153–174, 2018, doi: 10.1007/s40204-018-0095-0. DOI:

X. Yang et al., “Surface and interface engineering for nanocellulosic advanced materials,” Adv. Mater., vol. 33, no. 28, p. 2002264, 2021, doi: 10.1002/adma.202002264. DOI:

A. A. B. Omran et al., “Micro- and nanocellulose in polymer composite materials: A review,” Polymers, vol. 13, no. 2, p. 231, 2021, doi: 10.3390/polym13020231. DOI:

F. Wang, R. Chang, R. Ma and Y. Tian, “Eco-friendly and superhydrophobic nano-starch based coatings for self-cleaning application and oil-water separation,” Carbohydr. Polym., vol. 271, p. 118410, 2021, doi: 10.1016/j.carbpol.2021.118410. DOI:

F. Wang, R. Chang, R. Ma, H. Qiu and Y. Tian, “Eco-friendly and pH-responsive nano-starch-based superhydrophobic coatings for liquid-food residue reduction and freshness monitoring,” ACS Sustainable Chem. Eng., vol. 9, no. 30, pp. 10142–10153, 2021, doi: 10.1021/acssuschemeng.1c02090. DOI:

D. Bajer, “Nano-starch for food applications obtained by hydrolysis and ultrasonication methods,” Food Chem., vol. 402, p. 134489, 2023, doi: 10.1016/j.foodchem.2022.134489. DOI:

N. A. Hassan et al., “Recent trends in the preparation of nano-starch particles,” Molecules, vol. 27, no. 17, p. 5497, 2022, doi: 10.3390/molecules27175497. DOI:

H. Lu and Y. Tian, “Nanostarch: Preparation, modification, and application in pickering emulsions,” J. Agric. Food Chem., vol. 69, no. 25, pp. 6929–6942, 2021, doi: 10.1021/acs.jafc.1c01244. DOI:

Y. Wang and G. Zhang, “The preparation of modified nano-starch and its application in food industry,” Food Res. Int., vol. 140, p. 110009, 2021, doi: 10.1016/j.foodres.2020.110009. DOI:

G. Crini, “Historical review on chitin and chitosan biopolymers,” Environ. Chem. Lett., vol. 17, pp. 1623–1643, 2019, doi: 10.1007/s10311-019-00901-0. DOI:

J. L. Shamshina, P. Berton and R. D. Rogers, “Advances in functional chitin materials: A review,” ACS Sustainable Chem. Eng., vol. 7, no. 7, pp. 6444–6457, 2019, doi: 10.1021/acssuschemeng.8b06372. DOI:

T. Hahn, E. Tafi, A. Paul, R. Salvia, P. Falabella and S. Zibek, “Current state of chitin purification and chitosan production from insects,” J. Chem. Technol. Biotechnol., vol. 95, no. 11, pp. 2775–2795, 2020, doi: 10.1002/jctb.6533. DOI:

C. Londoño-Zuluaga et al., “A unique crustacean-based chitin platform to reduce self-aggregation of polysaccharide nanofibers,” Fibers, vol. 10, no. 10, p. 87, 2022, doi: 10.3390/fib10100087. DOI:

X. Yang, J. Liu, Y. Pei, X. Zheng and K. Tang, “Recent progress in preparation and application of nano‐chitin materials,” Energy Environ. Mater., vol. 3, no. 4, pp. 492–515, 2020, doi: 10.1002/eem2.12079. DOI:

S. R. Balusamy et al., “Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants,” Carbohydr. Polym., vol. 284, p. 119189, 2022, doi: 10.1016/j.carbpol.2022.119189. DOI:

S. Islam, M. A. R. Bhuiyan and M. N. Islam, “Chitin and chitosan: Structure, properties and applications in biomedical engineering,” J. Polym. Environ., vol. 25, pp. 854–866, 2017, doi: 10.1007/s10924-016-0865-5. DOI:

M. Dash, F. Chiellini, R. M. Ottenbrite and E. Chiellini, “Chitosan—A versatile semi-synthetic polymer in biomedical applications,” Prog. Polym. Sci., vol. 36, no. 8, pp. 981–1014, 2011, doi: 10.1016/j.progpolymsci.2011.02.001. DOI:

I. Younes and M. Rinaudo, “Chitin and chitosan preparation from marine sources. Structure, properties and applications,” Mar. Drugs, vol. 13, no. 3, pp. 1133–1174, 2015, doi: 10.3390/md13031133. DOI:

H-C. Yang, W-H. Wang, K-S. Huang and M-H. Hon, “Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties,” Carbohydr. Polym., vol. 79, no. 1, pp. 176–179, 2010, doi: 10.1016/j.carbpol.2009.07.045. DOI:

K. Vellingiri, T. Ramachandran and M. Senthilkumar, “Eco-friendly application of nano chitosan in antimicrobial coatings in the textile industry,” Nanosci. Nanotech. Let., vol. 5, no. 5, pp. 519–529, 2013, doi: 10.1166/nnl.2013.1575. DOI:

A. N. A. Hosain, A. El Nemr, A. El Sikaily, M. A. Mahmoud and M. F. Amira, “Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb (II), Cu (II) and Cd (II) removal,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104316, 2020, doi: 10.1016/j.jece.2020.104316. DOI:

S. Niemiec et al., “Nanosilk increases the strength of diabetic skin and delivers CNP-miR146a to improve wound healing,” Front. Immunol., vol. 11, p. 590285, 2020, doi: 10.3389/fimmu.2020.590285. DOI:

S. Sun et al., “Engineering regenerated nanosilk to efficiently stabilize pickering emulsions,” Colloids Surf., A Physicochem. Eng. Asp., vol. 635, p. 128065, 2022, doi: 10.1016/j.colsurfa.2021.128065. DOI:

Y. Hu, M. Shi, L. Liu, J. Yu and Y. Fan, “Top-down extraction of surface carboxylated-silk nanocrystals and application in hydrogel preparation,” Int. J. Biol. Macromol., vol. 174, pp. 162–174, 2021, doi: 10.1016/j.ijbiomac.2021.01.159. DOI:

A. E. Louiselle et al., “Evaluation of skin care concerns and patient’s perception of the effect of NanoSilk Cream on facial skin,” J. Cosmet. Dermatol., vol. 21, no. 3, pp. 1075–1085, 2022, doi: 10.1111/jocd.14198. DOI:

T. Lehmann, A. E. Vaughn, S. Seal, K. W. Liechty and C. Zgheib, “Silk fibroin-based therapeutics for impaired wound healing,” Pharmaceutics, vol. 14, no. 3, p. 651, 2022, doi: 10.3390/pharmaceutics14030651. DOI:

J. Y. Ljubimova and E. Holler, “Biocompatible nanopolymers: The next generation of breast cancer treatment?” Nanomed., vol. 7, no. 10, pp. 1467–1470, 2012, doi: 10.2217/nnm.12.115. DOI:

P. Barua, N. Hossain, M. T. H. Sidddiqui, S. Nizamuddin, S. A. Mazari and N. M. Mubarak, “Future development, prospective, and challenges in the application of green nanocomposites in environmental remediation,” in Sustainable Nanotechnology for Environmental Remediation, J. R. Koduru, R. R. Karri, N. M. Mubarak and E. R. Bandala, Eds. Elsevier, 2022, pp. 483–511, doi: 10.1016/B978-0-12-824547-7.00027-8. DOI:

S. Palit and C. M. Hussain, “Green polymer nanocomposites, biocompatible nanopolymers, and the environmental pollution control: A far-reaching review,” in Handbook of Polymer and Ceramic Nanotechnology, C. M. Hussain and S. Thomas, Eds. Cham: Springer, 2021, pp. 3–23, doi: 10.1007/978-3-030-40513-7_1. DOI:

B. Joseph et al., “Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: recent advances,” Polymers, vol. 12, no. 8, p. 1664, 2020, doi: 10.3390/polym12081664. DOI:

L. Barandiaran et al., “Enzymatic upgrading of nanochitin using an ancient lytic polysaccharide monooxygenase,” Commun. Mater., vol. 3, pp. 1–10, 2022, doi: 10.1038/s43246-022-00277-9. DOI:

S. Sahraee, J. M. Milani, B. Ghanbarzadeh and H. Hamishehkar, “Development of emulsion films based on bovine gelatin‐nano chitin‐nano ZnO for cake packaging,” Food Sci. Nutr., vol. 8, no. 2, pp. 1303–1312, 2020, doi: 10.1002/fsn3.1424. DOI:

D. Li et al., “Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels,” Carbohydr. Polym., vol. 236, p. 116061, 2020, doi: 10.1016/j.carbpol.2020.116061. DOI:

R. Ikram, J. B. Mohamed, M. A. Qadir, A. Sidek, M. M. Stylianakis and G. Kenanakis, “Recent advances in chitin and chitosan/graphene-based bio-nanocomposites for energetic applications,” Polymers, vol. 13, no. 19, p. 3266, 2021, doi: 10.3390/polym13193266. DOI:

B. Huang et al., “Effect of Cu (II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene oxide nanocomposite,” Carbohydr. Polym., vol. 157, pp. 576–585, 2017, doi: 10.1016/j.carbpol.2016.10.025. DOI:

J. H. Lee, J. Marroquin, K. Y. Rhee, S. J. Park and D. Hui, “Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites,” Composites Part B: Engineering, vol. 45, no. 1, pp. 682–687, 2013, doi: 10.1016/j.compositesb.2012.05.011. DOI:

M. Cobos, B. González, M. J. Fernández and M. D. Fernández, “Study on the effect of graphene and glycerol plasticizer on the properties of chitosan-graphene nanocomposites via in situ green chemical reduction of graphene oxide,” Int. J. Biol. Macromol., vol. 114, pp. 599–613, 2018, doi: 10.1016/j.ijbiomac.2018.03.129. DOI:

A. Brakat and H. Zhu, “Nanocellulose-graphene hybrids: Advanced functional materials as multifunctional sensing platform,” Nano-Micro Lett., vol. 13, pp. 1–37, 2021, doi: 10.1007/s40820-021-00627-1. DOI:

A. Brakat and H. Zhu, Nanocellulose-graphene derivative hybrids: Advanced structure-based functionality from top-down synthesis to bottom-up assembly,” ACS Appl. Bio Mater., vol. 4, no. 10, pp. 7366–74401, 2021, doi: 10.1021/acsabm.1c00712. DOI:

J-M. Malho, P. Laaksonen, A. Walther, O. Ikkala and M. B. Linder, “Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix,” Biomacromolecules, vol. 13, no. 4, pp. 1093–1099, 2012, doi: 10.1021/bm2018189. DOI:

L. Song et al., “Water-induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide,” Carbohydr. Polym., vol. 179, pp. 110–117, 2018, doi: 10.1016/j.carbpol.2017.09.078. DOI:

R. Kabiri and H. Namazi, “Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor,” Cellulose, vol. 21, pp. 3527–3539, 2014, doi: 10.1007/s10570-014-0366-4. DOI:

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 212, pp. 25–31, 2019, doi: 10.1016/j.saa.2018.12.031. DOI:

S. Asmat and Q. Husain, “Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: Characterization and application,” “Int. J. Biol. Macromol., vol. 117, pp. 331–341, 2018, doi: 10.1016/j.ijbiomac.2018.05.216. DOI:

R. Poonguzhali, S. K. Basha and V. S. Kumari, “Nanostarch reinforced with chitosan/poly (vinyl pyrrolidone) blend for in vitro wound healing application,” Polymer-Plastics Technology and Engineering, vol. 57, no. 14, pp. 1400–1410, 2018, doi: 10.1080/03602559.2017.1381255. DOI:

P. Xu et al., “Design of nano-starch-reinforced ethyl-co-vinyl acetate elastomers by simultaneously constructing interfacial bonding and novel reversible matrix crosslinking,” Chem. Eng. J., vol. 346, pp. 497–505, 2018, doi: 10.1016/j.cej.2018.03.189. DOI:

A. Nasiri, M. A. Khalilzadeh and D. Zareyee, “Biosynthesis and characterization of magnetic starch-silver nanocomposite: Catalytic activity in eco-friendly media,” J. Coord. Chem., vol. 75, no. 1–2, pp. 256–279, 2022, doi: 10.1080/00958972.2022.2038369. DOI:

R. Sindhu and S. Ambawat, “Nano-starch films as effective antimicrobial packaging material,” in Nanotechnological Approaches in Food Microbiology, S. B. Dhull, P. Chawla and R. Kaushik, Eds. CRC Press, 2020, pp. 353–379, doi: 10.1201/9780429342776-15. DOI:

Q. Chen, Z. Zong, X. Gao, Y. Zhao and J. Wang, “Preparation and characterization of nanostarch-based green hard capsules reinforced by cellulose nanocrystals,” Int. J. Biol. Macromol., vol. 167, pp. 1241–1247, 2021, doi: 10.1016/j.ijbiomac.2020.11.078. DOI:

R. Poonguzhali, S. K. Basha and V. S. Kumari, “Fabrication of asymmetric nanostarch reinforced chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application,” Int. J. Biol. Macromol., vol. 114, pp. 204–213, 2018, doi: 10.1016/j.ijbiomac.2018.03.092. DOI:

S. Ling et al., “Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites,” ACS Macro Lett., vol. 3, no. 2, pp. 146–152, 2014, doi: 10.1021/mz400639y. DOI:

F. Mascarenhas-Melo et al., “Application of nanotechnology in management and treatment of diabetic wounds,” J. Drug Target., vol. 30, no. 10, pp. 1034–1054, 2022, doi: 10.1080/1061186X.2022.2092624. DOI:

S. Yue, “Application and research of adjuvant therapy in sports injury rehabilitation based on nano-biomaterials,” Int. J. Nanotechnol., vo. 18, no. 1–4, 127–141, 2021, doi: 10.1504/IJNT.2021.114220. DOI:

D. Çimen, I. Göktürk, M. Çalışır, F. Yılmaz and A. Denizli, “Nano-biosorbents for contaminant removal: An introduction,” Nano-Biosorbents for Decontamination of Water, Air, and Soil Pollution, pp. 3–28, 2022, doi: 10.1016/B978-0-323-90912-9.00001-0. DOI:

P. Agrawal, B. V. G. Vishnu and K. S. T. Reddy, Preparation of nano silk sericin based hydrogels from silk industry waste,” J. Environ. Res. Devel., vol. 8, no. 2, pp. 243–253, 2013,

F. Wang et al., “Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites,” Mater. Sci. Eng. C, vol. 79, pp. 728–739, 2017, doi: 10.1016/j.msec.2017.05.120. DOI:

K. Hu, M. K. Gupta, D. D. Kulkarni and V. V. Tsukruk, “Ultra‐robust graphene oxide‐silk fibroin nanocomposite membranes,” Adv. Mater., vol. 25, no. 16, pp. 2301–2307, 2013, doi: 10.1002/adma.201300179. DOI:

R. Balu et al., “Tough photocrosslinked silk fibroin/graphene oxide nanocomposite hydrogels,” Langmuir, vol. 34, no. 31, pp. 9238–9251, 2018, doi: 10.1021/acs.langmuir.8b01141. DOI:

Y. Wang et al., “Dramatic enhancement of graphene oxide/silk nanocomposite membranes: Increasing toughness, strength, and Young’s modulus via annealing of interfacial structures,” ACS Appl. Mater. Interfaces, vol. 8, no. 37, pp. 24962–24973, 2016, doi: 10.1021/acsami.6b08610. DOI:

P. O. Ukaogo, U. Ewuzie and C. V. Onwuka, “Environmental pollution: Causes, effects, and the remedies,” Microorg. Sust. Environ. Health, pp. 419–429, 2020, doi: 10.1016/B978-0-12-819001-2.00021-8. DOI:

R. Li, L. Wang, D. Kong and L. Yin, “Recent progress on biodegradable materials and transient electronics,” Bioact. Mater., vol. 3, no. 3, pp. 322–333, 2018, doi: 10.1016/j.bioactmat.2017.12.001. DOI:

M. N. Mundada, S. Kumar and A. V. Shekdar, “E‐waste: A new challenge for waste management in India,” Int. J. Environ. Studies, vol. 61, no. 3, pp. 265–279, 2004, doi: 10.1080/0020723042000176060. DOI:

O. A. Alabi, K. I. Ologbonjaye, O. Awosolu and O. E. Alalade, “Public and environmental health effects of plastic wastes disposal: A review,” J. Toxicol. Risk Assess., vol. 5, no. 1, pp. 1–13, 2019, doi: 10.23937/2572-4061.1510021. DOI:

K. V. S. Rajmohan, C. Ramya, M. R. Viswanathan and S. Varjani, “Plastic pollutants: Effective waste management for pollution control and abatement,” Curr. Opin. Environ. Sci. Health, vol. 12, pp. 72–84, 2019, doi: 10.1016/j.coesh.2019.08.006 DOI:

H. M. Veit and A. M. Bernardes, “Electronic waste: Generation and management,” in Electronic Waste: Recycling Techniques, H. M. Veit and A. M. Bernardes, Eds. Springer, pp. 3–12, 2015, doi: 10.1007/978-3-319-15714-6_2 DOI:

W. B. Han, J. H. Lee, J-W. Shin and S-W. Hwang, “Advanced materials and systems for biodegradable, transient electronics,” Adv. Mater., vol. 32, no. 51, p. 2002211, 2020, doi: 10.1002/adma.202002211. DOI:

O. A. T. Dias, S. Konar, A. L. Leão, W. Yang, J. Tjong and M. Sain, “Current state of applications of nanocellulose in flexible energy and electronic devices,” Front. Chem., vol. 8, p. 420, 2020, doi: 10.3389/fchem.2020.00420. DOI:

R. S. Andre et al., “Nanochitin-based composite films as a disposable ethanol sensor,” J. Environ. Chem. Eng., vol. 8, p. 104163, 2020, doi: 10.1016/j.jece.2020.104163. DOI:

X. Jing et al., “Highly stretchable, self-healable, freezing-tolerant, and transparent polyacrylic acid/nanochitin composite hydrogel for self-powered multifunctional sensors,” ACS Sustainable Chem. Eng., vol. 9, no. 28, pp. 9209–9220, 2021, doi: 10.1021/acssuschemeng.1c00949. DOI:

C. Yoo et al., “Wafer-scale two-dimensional MoS2 layers integrated on cellulose substrates toward environmentally friendly transient electronic devices,” ACS Appl. Mater. Interfaces, vol. 12, no. 22, pp. 25200–25210, 2020, doi: 10.1021/acsami.0c06198. DOI:

C. Zheng et al., “A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion,” Carbohydr. Polym., vol. 250, p. 116905, 2020, doi: 10.1016/j.carbpol.2020.116905. DOI:

Y. Wang, X. Wu, Y. Han and T. Li, “Flexible supercapacitor: Overview and outlooks,” J. Energy Storage, vol. 42, p. 103053, 2021, doi: 10.1016/j.est.2021.103053 DOI:

Z. Xiong et al., “A novel strategy to enhance the electrochemical performance of polypyrrole‐coated paper‐based supercapacitor,” Macromol. Mater. Eng., vol. 307, no. 11, p. 2200359, 2022, doi: 10.1002/mame.202200359. DOI:

S. Mohanty et al., “Potential soluble substrates for transient electronics applications: A review,” AIP Adv., vol. 12, no. 5, p. 050701, 2022, doi: 10.1063/5.0066174. DOI:

L. Migliorini et al., “All‐printed green micro‐supercapacitors based on a natural‐derived ionic liquid for flexible transient electronics,” Adv. Funct. Mater., vol. 31, no. 27, p. 2102180, 2021, doi: 10.1002/adfm.202102180. DOI:

N. Mittal, A. Ojanguren, M. Niederberger and E. Lizundia, “Degradation behavior, biocompatibility, electrochemical performance, and circularity potential of transient batteries,” Adv. Sci., vol. 8, no. 12, p. 2004814, 2021, doi: 10.1002/advs.202004814. DOI:

K. Fu et al., “All‐component transient lithium‐ion batteries,” Adv. Energy Mater., vol. 6, no. 10, p. 1502496, 2016, doi: 10.1002/aenm.201502496. DOI:

K. Fu et al., “Transient rechargeable batteries triggered by cascade reactions,” Nano Lett., vol. 15, no. 7, pp. 4664–4671, 2015, doi: 10.1021/acs.nanolett.5b01451. DOI:

Y. Chen, L. Zhang, L. Lin and H. You, “A composite porous membrane based on derived cellulose for transient gel electrolyte in transient lithium-ion batteries,” Mater., vol. 15, no. 4, p. 1584, 2022, doi: 10.3390/ma15041584. DOI:

T. Lei et al., “Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics,” Proc. Natl Acad. Sci., vol. 114, no. 20, pp. 5107–5112, 2017, doi: 10.1073/pnas.1701478114. DOI:

V. Gupta, D. Biswas and S. Roy, “A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications,” Mater., vol. 15, no. 17, p. 5899, 2022, doi: 10.3390/ma15175899. DOI:

S. Roy, P. Ezati, D. Biswas and J-W. Rhim, “Shikonin functionalized packaging film for monitoring the freshness of shrimp,” Mater., vol. 15, no. 19, p. 6615, 2022, doi: 10.3390/ma15196615. DOI:

N. A. Scilletta, M. Pezzoni, M. F. Desimone, G. J. A. A. Soler-Illia, M. G. Bellino and P. N. Catalano, “Determination of antibacterial activity of film coatings against four clinically relevant bacterial strains,” Bio-protoc., vol. 11, no. 2, p. e3887, 2021, doi: 10.21769/BioProtoc.3887. DOI:

H. Mohit, S. M. Sanjay, S. Siengchin, G. H. Kumar, V. A. M. Selvan and R. Ruban, “Future challenges and applications of polymer coatings,” in Polymer Coatings: Technologies and Applications, S. M. Rangappa, J. Parameswaranpillai and S. Siengchin, Eds. Boca Raton: CRC Press, 2020, pp. 325–337, doi: 10.1201/9780429199226-17. DOI:

U. C. Paul and J. A. Heredia‐Guerrero, “Paper and cardboard reinforcement by impregnation with environmentally friendly high‐performance polymers for food packaging applications,” in Sustainable Food Packaging Technology, A. Athanassiou, Ed. Wiley, 2021, pp. 281–304, doi: 10.1002/9783527820078.ch10. DOI:

U. Bhat, A. Augustin, S. Bhat and K. Udupa, “Preparation and characterization of copper thin films for antimicrobial applications,” in Microscopy Applied to Materials Sciences and Life Sciences, S. Thomas, A. V. Rane, N. Kalarikkai and K. Kanny, Eds. Waretown, NJ, USA: Apple Academic Press, 2018, pp. 91–110.

Y. Liao, R. Zhang and J. Qian, “Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging,” RSC Adv., vol. 9, no. 50, pp. 29154–29172, 2019, doi: 10.1039/C9RA05954G. DOI:

G. F. Picheth et al., “Lysozyme-triggered epidermal growth factor release from bacterial cellulose membranes controlled by smart nanostructured films,” Journal of Pharmaceutical Sciences, vol. 103, no. 12, pp. 3958–3965, 2014, doi: 10.1002/jps.24205. DOI:

Y Sadav, A. K. Chauhan, S. Kumar and N. Kataria, “Advanced membrane technology for the removal of pesticides from water and wastewater,” in Pesticides Remediation Technologies from Water and Wastewater, M. H. Dehghani, R. Karri and I. Anastopoulos, Eds. Elsevier, 2022, pp. 143–156, doi: 10.1016/B978-0-323-90893-1.00007-6. DOI:

E. A. A. Khafar, D. B. Darwish, G. M. Al-Jahani and H. E-D. Aboul, “Bacterial nano-polymer production to produce edible coating and films,” Int. J. Pharm. Res. Allied Sci., vol. 11, no. 2, pp. 13–23. DOI:

C. Liu, J. Shen, C. Z. Liao, K. W. K. Yeung and S. C. Tjong, “Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics, Express Polym. Lett., vol. 12, no. 4, pp. 365–382, 2018, doi: 10.3144/expresspolymlett.2018.31. DOI:

H-L. Nguyen et al., “Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications,” Carbohydr. Polym., vol. 271, p. 118421, doi: 10.1016/j.carbpol.2021.118421. DOI:

R. Baby, M. Z. Hussein, A. H. Abdullah and Z. Zainal, “Nanomaterials for the treatment of heavy metal contaminated water,” Polymers, vol. 14, no. 3, p. 583, 2022, doi: 10.3390/polym14030583. DOI:

M. Tamayo-Belda et al., “Understanding nanoplastic toxicity and their interaction with engineered cationic nanopolymers in microalgae by physiological and proteomic approaches,” Environmental Science: Nano, vol. 8, pp. 2277–2296, 2021, doi: 10.1039/D1EN00284H. DOI:

N. Ghaemi and Z. Khodakarami, “Nano-biopolymer effect on forward osmosis performance of cellulosic membrane: High water flux and low reverse salt,” Carbohydr. Polym., vol. 204, pp. 78–88, 2019, doi: 10.1016/j.carbpol.2018.10.005. DOI:

G-Z. Yin and X-M. Yang, “Biodegradable polymers: A cure for the planet, but a long way to go,” J. Polym. Res., vol. 27, pp. 1–14, 2020, doi: 10.1007/s10965-020-2004-1. DOI:

D. Gao, L. Du, J. Yang, W-M. Wu and H. Liang, “A critical review of the application of white rot fungus to environmental pollution control,” Crit. Rev. Biotechnol., vol. 30, no. 1, pp. 70–77, 2010, doi: 10.3109/07388550903427272. DOI:

M. R. Hershey and D. B. Hill, “Is pollution ‘a white thing’? Racial differences in preadults’ attitudes,” Public Opin. Q., vol. 41, no. 4, pp. 439–458, 1977, doi: 10.1086/268406. DOI:

M. A. White, “Sustainability: I know it when I see it,” Ecol. Econ., vol. 86, pp. 213–217, 2013, doi: 10.1016/j.ecolecon.2012.12.020. DOI:

A. K. Verma, “Sustainable development and environmental ethics,” Int. J. Environ. Sci., vol. 10, no. 1, pp. 1–5,

J. Morelli, “Environmental sustainability: A definition for environmental professionals,” J. Environ. Sust., vol. 1, no. 1, 2011, doi: 10.14448/jes.01.0002. DOI:

J. Huang and L. Gan, “Sustainability in polymer sciences,” Macromol. Biosci., vol. 22, no. 6, pp. 2200191, 2022, doi: 10.1002/mabi.202200191. DOI:

D. Bonevac, “Is sustainability sustainable?” Acad. Quest., vol. 23, no. 1, pp. 84–101, 2010, doi: 10.1007/s12129-009-9152-4. DOI:

S. Lee, L. T. Hao, J. Park, D. X. Oh and D. S. Hwang, “Nanochitin and nanochitosan: Chitin nanostructure engineering with multiscale properties for biomedical and environmental applications,” Adv. Mater., vol. 35, no. 4, p. 2203325, 2023, doi: 10.1002/adma.202203325. DOI:

W. Feng and Z. Wang, “Biomedical applications of chitosan-graphene oxide nanocomposites,” iScience, vol. 25, no. 1, 2022, doi: 10.1016/j.isci.2021.103629. DOI:

W. Zhang et al., “Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites,” Scientific reports, vol. 5, pp. 1–9, 2015, doi: 10.1038/srep11129. DOI:

V. Tangpasuthadol, S. M. Pendharkar and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: Study of model compounds,” Biomater., vol. 21, no. 23, pp. 2371–2378, 2000, doi: 10.1016/S0142-9612(00)00104-6. DOI:

R. Donate, M. Monzón, M. E. Alemán‐Domínguez and F. Rodríguez‐Esparragón, “Effects of ceramic additives and bioactive coatings on the degradation of polylactic acid‐based bone scaffolds under hydrolytic conditions,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 111, no. 2, pp. 429–441, 2023, doi: 10.1002/jbm.b.35162. DOI:

H. Seyednejad, D. Gawlitta, W. J. Dhert, C. F. van Nostrum, T. Vermonden and W. E. Hennink, “Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications,” Acta Biomater., vol. 7, no. 5, pp. 1999–2006, 2011, doi: 10.1016/j.actbio.2011.01.018. DOI:

L. Polo-Corrales, M. Latorre-Esteves and J. E. Ramirez-Vick, “Scaffold design for bone regeneration,” J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 15–56, 2014, doi: 10.1166/jnn.2014.9127. DOI:

Z. Shariatinia and A. Mazloom-Jalali, “Molecular dynamics simulations on chitosan/graphene nanocomposites as anticancer drug delivery using systems,” Chin. J. Phys., vol. 66, pp. 362–382, 2020, doi: 10.1016/j.cjph.2020.04.012. DOI:

T. Figueroa, C. Aguayo and K. Fernández, “Design and characterization of chitosan-graphene oxide nanocomposites for the delivery of proanthocyanidins,” Int. J. Nanomed., vol. 15, p. 1229, 2019, doi: 10.2147/IJN.S240305. DOI:

N. Ashammakhi et al., “Highlights on advancing frontiers in tissue engineering,” Tissue Eng Part B Rev., vol. 28, no. 3, pp. 633–664, 2022, doi: 10.1089/ten.teb.2021.0012. DOI:

P. Alamán-Díez, E. García-Gareta, P. F. Napal, M. Arruebo and M. Á. Pérez, “In vitro hydrolytic degradation of polyester-based scaffolds under static and dynamic conditions in a customized perfusion bioreactor,” Materials, vol. 15, no. 7, p. 2572, 2022, doi: 10.3390/ma15072572. DOI:

M. Guzmán-Chávez, J. A. Claudio-Rizo, M. Caldera-Villalobos, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez and N. Rodríguez-Fuentes, “Novel bioactive collagen-polyurethane-pectin scaffolds for potential application in bone regenerative medicine,” Appl. Surf. Sci. Adv., vol. 11, p. 100317, 2022, doi: 10.1016/j.apsadv.2022.100317 DOI:

O. Gil-Castell, I. Ontoria-Oviedo, J. D. Badia, E. Amaro-Prellezo, P. Sepúlveda and A. Ribes-Greus, “Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration,” React. Funct. Polym., vol. 170, p. 105064, 2022, doi: 10.1016/j.reactfunctpolym.2021.105064. DOI:

P. Sánchez-Cid, M. Jiménez-Rosado, A. Romero and V. Pérez-Puyana, “Novel trends in hydrogel development for biomedical applications: A review,” Polymers, vol. 14, no. 15, p. 3023, 2022, doi: 10.3390/polym14153023. DOI:

M. Tarsitano, M. C. Cristiano, M. Fresta, D. Paolino and C. Rafaniello, “Alginate-based composites for corneal regeneration: The optimization of a biomaterial to overcome its limits,” Gels, vol. 8, no. 7, p. 431, 2022, doi: 10.3390/gels8070431. DOI:

R. R. Pagar, S. R. Musale, G. Pawar, D. Kulkarni and P. S. Giram, “Comprehensive review on the degradation chemistry and toxicity studies of functional materials,” ACS Biomater. Sci. Eng., vol. 8, no. 6, 2022, doi: 10.1021/acsbiomaterials.1c01304. DOI:

N. H. Aysa and A. E. Shalan, “Green nanocomposites: Magical solution for environmental pollution problems,” in Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, A. E. Shalan, A. S. Hamdy Makhlouf and S. Lanceros‐Méndez, Eds. Springer, 2022, pp. 389–417, doi: 10.1007/978-3-030-94319-6_13. DOI:

M. Thakur, M. Chandel, A. Rani and A. Sharma, “Introduction to biorenewable nanocomposite materials: Methods of preparation, current developments, and future perspectives,” in Biorenewable Nanocomposite Materials, Vol 2: Desalination and Wastewater Remediation, D. Pathania and L. Singh, Eds. ACS Publications, 2022, pp. 1–24, doi: 10.1021/bk-2022-1411.ch001. DOI:

N. Pytlik and E. Brunner, “Diatoms as potential ‘green’ nanocomposite and nanoparticle synthesizers: Challenges, prospects, and future materials applications,” MRS Commun., vol. 8, pp. 322–331, 2018, doi: 10.1557/mrc.2018.34. DOI:

S. H. Khan, “Green nanotechnology for the environment and sustainable development,” in Green Materials for Wastewater Treatment, M. Naushad and E. Lichtfouse, Eds. Springer, 2020, pp. 13–46, doi: 10.1007/978-3-030-17724-9_2. DOI:




How to Cite

A. Kausar and I. Ahmad, “Degradable Green Polymers, Green Nanopolymers and Green Nanocomposites Derived from Natural Systems: Statistics and Headways”, NH, vol. 2, p. 36 pages, 2023.