Physical Properties of ZnO-NPs Induced by the Thermal Annealing of Hydrozincite Derived from Adansonia Digitata Leaves Extract




Adansonia digitata, annealing temperatures, structural properties, optical properties, Zno-NPs


In this study, we investigated the effects of the annealing temperatures on the physical properties of zinc oxide nanoparticles produced by the decomposition of the hydrozincite obtained from Adansonia digitata leaves. The results of the X-ray diffraction revealed the formation of well-crystallised hexagonal zinc oxide with an average crystallite size of 11.80 nm, 11.90 nm, 11.97 nm and 15.28 nm for the samples annealed at 400 °C, 500 °C, 600 °C and 700 °C, respectively. The crystallite size of the hydrozincite constituting the unannealed sample was 22 nm. In the spectra of the Fourier transform infrared spectroscopy, the appearance of the peaks at 520 cm-1 for all synthesised materials confirms the formation of pure wurtzite zinc oxide. The band gap determined from diffuse reflectance ultraviolet-visible spectroscopy was found to be 3.19 eV, 3.21 eV, 3.23 eV and 3.24 eV for the samples annealed at 400 °C, 500 °C, 600 °C and 700 °C, respectively. These values increase with the annealing temperature and are still lower than the band gap of pure bulk zinc oxide (3.3 eV) owing to the structural defects as confirmed by the broad emission bands in the visible depicted from the photoluminescence analysis.


Metrics Loading ...


M. S. Akhtar, J. Panwar, and Y. S. Yun, “Biogenic synthesis of metallic nanoparticles by plant extracts,” ACS Sustain. Chem. Eng., vol. 1, no. 6, pp. 591–602, 2013, doi: 10.1021/sc300118u. DOI:

M. Alhujaily et al., “Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties,” Bioengineering, vol. 9, no. 10, p. 541, 2022, doi: 10.3390/bioengineering9100541. DOI:

S. Gowri, R. R. Gandhi, and M. Sundrarajan, “Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol,” J. Mater. Sci. Technol., vol. 30, no. 8, pp. 782–790, 2014, doi: 10.1016/j.jmst.2014.03.002. DOI:

N. Thovhogi, E. Park, E. Manikandan, M. Maaza, and A. Gurib-Fakim, “Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract,” J. Alloys Compd., vol. 655, pp. 314–320, 2016, doi: 10.1016/j.jallcom.2015.09.063. DOI:

S. P. Goutam, G. Saxena, V. Singh, A. K. Yadav, R. N. Bharagava, and K. B. Thapa, “Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater,” Chem. Eng. J., vol. 336, pp. 386–396, 2018, doi: 10.1016/j.cej.2017.12.029. DOI:

I. Ngom, N. M. Ndiaye, N. F. Sylla, S. Dieng, B. D. Ngom, and M. Maaza, “Study of the physical properties of NiO nanoparticles synthesized from the flowers, seeds, and leaves extracts of Moringa oleifera, MRS Adv., vol. 8, pp. 729–735, 2023, doi: 10.1557/s43580-023-00578-2. DOI:

J. Sackey et al., “Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles,” Mater. Chem. Phys., vol. 244, p. 122714, 2020, doi: 10.1016/j.matchemphys.2020.122714. DOI:

L. Schmidt-Mende, and J. L. MacManus-Driscoll, “ZnO—Nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40–48, 2007, doi: 10.1016/S1369-7021(07)70078-0. DOI:

A. Sirelkhatim et al., “Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism,” Nano-Micro Lett., vol. 7, pp. 219–242, 2015, doi: 10.1007/s40820-015-0040-x. DOI:

Z. L. Wang, “ZnO nanostructures: Growth, properties and applications,” J. Phys. Condens. Matter., vol. 16, no. 25, pp. 829–858, 2004, doi: 10.1088/0953-8984/16/25/R01. DOI:

V. Srikant, and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys., vol. 83, no. 10, pp. 5447–5451, 1998, doi: 10.1063/1.367375. DOI:

J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, and S. I. Hong, “Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 9, no. 1, pp. 1–8, 2018, doi: 10.1088/2043-6254/aaa6f1. DOI:

S. Karthik, P. Siva, K. S. Balu, R. Suriyaprabha, V. Rajendran, and M. Maaza, “Acalypha indica-mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity,” Adv. Powder Technol., vol. 28, no. 12, pp. 3184–3194, 2017, doi: 10.1016/j.apt.2017.09.033. DOI:

E. A. S. Dimapilis, C. Hsu, M. R. O. Mendoza, and M.-C. Lu, “Zinc oxide nanoparticles for water disinfection,” Sustain. Environ. Res., vol. 28, no. 2, pp. 47–56, 2017, doi: 10.1016/j.serj.2017.10.001. DOI:

A. Diallo et al., “Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals,” Green Chem. Lett. Rev., vol. 11, no. 2, pp. 166–175, 2018, doi: 10.1080/17518253.2018.1447604. DOI:

M. T. Dieng, B. D. Ngom, P. D. Tall, and M. Maaza, “Biosynthesis of Zn5(CO3)2(OH)6 from Arachis Hypogaea shell (peanut shell) and its conversion to ZnO nanoparticles,” Am. J. Nanomater., vol. 7, pp. 1–9, 2019, doi: 10.12691/AJN-7-1-1.

S. Ghose, “The crystal structure of hydrozincite, Zn5(OH)6(CO3)2,” Acta Cryst., vol. 17, pp. 1051–1057, 1964, doi: 10.1107/S0365110X64002651. DOI:

A. O. Kane et al., “Biosynthesis of ZnO nanoparticles by Adansonia Digitata leaves dye extract: Structural and physical properties,” MRS Adv., vol. 3, pp. 2487–2497, 2018, doi: 10.1557/adv.2018.272. DOI:

R. Wahab, S. G. Ansari, Y. S. Kim, M. A. Dar, and H. S. Shin, “Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles,” J. Alloys Compd., vol. 461, no. 1–2, pp. 66–71, 2008, doi: 10.1016/j.jallcom.2007.07.029. DOI:

M. Y. Nassar, M. M. Moustafa, and M. M. Taha, “Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal,” RSC Adv., vol. 48, pp. 42180–42195, 2016, doi: 10.1039/C6RA04855B. DOI:

M. C. Hales, and R. L. Frost, “Thermal analysis of smithsonite and hydrozincite,” J. Therm. Anal. Calorim., vol. 91, pp. 855–860, 2008, doi: 10.1007/s10973-007-8571-0. DOI:

A. Patrut et al., “Radiocarbon dating of a very large African baobab,” Tree Physiol., vol. 27, no. 11, pp. 1569–1574, 2007, doi: 10.1093/treephys/27.11.1569. DOI:

J. Rahul et al., “Adansonia digitata L. (baobab): A review of traditional information and taxonomic description,” Asian Pac. J. Trop. Biomed., vol. 5, no. 1, pp. 79–84, 2015, doi: 10.1016/S2221-1691(15)30174-X. DOI:

F. J. Chadare, Baobab (Adansonia digitata L.) foods from Benin: Composition, processing and quality. Wageningen, Netherlands: Wageningen University, 2010.

E. N. Uhuo, S. I. Egba, P. C. Nwuke, C. A. Obike, and G. K. Kelechi, “Antioxidative properties of Adansonia digitata L. (baobab) leaf extract exert protective effect on doxorubicin-induced cardiac toxicity in Wistar rats,” Clin. Nutr. Open Sci., vol. 45, pp. 3–16, 2022, doi: 10.1016/j.nutos.2022.07.004. DOI:

D. Yazzie, D. J. Vanderjagt, A. Pastuszyn, A. Okolo, and R. H. Glew, “The amino acid and mineral content of baobab (Adansonia digitata L.) leaves,” J. Food Compos. Anal., vol. 7, no. 3, pp. 189–193, 1994, doi: 10.1006/jfca.1994.1018. DOI:

E. A. Irondi, J. K. Akintunde, S. O. Agboola, A. A. Boligon, and M. L. Athayde, “Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α-amylase, α-glucosidase, and aldose reductase,” Food Sci. Nutr., vol. 5, no. 2, pp. 233–242, 2017, doi: 10.1002/fsn3.386. DOI:

M. G. Berhe, and Y. T. Gebreslassie, “Biomedical applications of biosynthesized nickel oxide nanoparticles,” Int. J. Nanomedicine., vol. 18, pp. 4229–4251, 2023, doi: 10.2147/IJN.S410668. DOI:

C. C. Ogbaga, F. A. Nuruddeen, O. O. Alonge, and O. F. Nwagbara, “Phytochemical, elemental and proximate analyses of stored, sun-dried and shade-dried baobab (Adansonia digitata) leaves,” in 13th Int. Conf. Electron. Comput. ICECCO 2017, January 2018, pp. 1–5, doi: 10.1109/ICECCO.2017.8333339. DOI:

M. M. El-Okr, M. A. Salem, M. S. Salim, R. M. El-Okr, M. Ashoush, and H. M. Talaat, “Synthesis of cobalt ferrite nano-particles and their magnetic characterization,” J. Magn. Magn. Mater., vol. 323, no. 7, pp. 920–926, 2011, doi: 10.1016/j.jmmm.2010.11.069. DOI:

P. K. Raul et al., “CuO nanorods: A potential and efficient adsorbent in water purification,” RSC Adv., vol. 76, pp. 40580–40587, 2014, doi: 10.1039/C4RA04619F. DOI:

Y. Yulizar, R. Bakri, D. Oky, B. Apriandanu, and T. Hidayat, “Nano-structures & nano-objects ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao,” Nano-Structures & Nano-Objects., vol. 16, pp. 300–305, 2018, doi: 10.1016/j.nanoso.2018.09.003. DOI:

T. V. Surendra, S. M. Roopan, N. A. Al-Dhabi, M. V. Arasu, G. Sarkar, and K. Suthindhiran, “Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities,” Nanoscale Res. Lett., vol. 11, pp. 1–10, 2016, doi: 10.1186/s11671-016-1750-9. DOI:

Y. Gutha, J. L. Pathak, W. Zhang, Y. Zhang, and X. Jiao, “Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO),” Int. J. Biol. Macromol., vol. 103, pp. 234–241, 2017 doi:10.1016/j.ijbiomac.2017.05.020. DOI:

R. Dobrucka, and J. Długaszewska, “Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract,” Saudi J. Biol. Sci., vol. 23, no. 4, pp. 517–523, 2016, doi: 10.1016/j.sjbs.2015.05.016. DOI:

N. Bala et al., “Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity,” RSC Adv., vol. 7, pp. 4993–5003, 2015, doi: 10.1039/C4RA12784F. DOI:

N. Matinise, X. G. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza, “ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties and mechanism of formation,” Appl. Surf. Sci., vol. 406, pp. 339–347, 2017, doi: 10.1016/j.apsusc.2017.01.219. DOI:

A. T. Khalil et al., “Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications,” Nanomedicine., vol. 12, no. 15, pp. 1767–1789, 2017, doi: 10.2217/nnm-2017-0124. DOI:

F. Greuter, and G. Blatter, “Electrical properties of grain boundaries in polycrystalline compound semiconductors,” Semicond. Sci. Technol., vol. 5, no. 2, pp. 111–137, 1990, doi: 10.1088/0268-1242/5/2/001. DOI:

J. Kossanyi et al., “Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,” J. Lumin., vol. 46, no. 1, pp. 17–24, 1990, doi: 10.1016/0022-2313(90)90077-O. DOI:

M. Liu, A. H. Kitai, and P. Mascher, “Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese,” J. Lumin., vol. 54, no. 1, pp. 35–42, 1992, doi: 10.1016/0022-2313(92)90047-D. DOI:

F. N. Alharbi, Z. M. Abaker, and S. Z. A. Makawi, “Phytochemical substances—Mediated synthesis of zinc oxide nanoparticles (ZnO NPS),” Inorganics, vol. 11, no. 8, pp. 3281–3294, 2023, doi: 10.3390/inorganics11080328. DOI:

J. Lv, and M. Fang, “Photoluminescence study of interstitial oxygen defects in ZnO nanostructures,” Mater. Lett., vol. 218, pp. 18–21, 2018, doi: 10.1016/j.matlet.2018.01.137. DOI:

L. Zhang, J. Zhao, J. Zheng, L. Li, and Z. Zhu, “Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties,” Appl. Surf. Sci., vol. 258, no. 2, pp. 711–718, 2011, doi: 10.1016/j.apsusc.2011.07.116. DOI:




How to Cite

I. Ngom, “Physical Properties of ZnO-NPs Induced by the Thermal Annealing of Hydrozincite Derived from Adansonia Digitata Leaves Extract”, NH, vol. 2, p. 15 pages, 2023.



Received 2023-05-31
Accepted 2023-09-11
Published 2023-12-05