Hemp Fibres: Essentials, Composites or Nanocomposites and Technical Applications
DOI:
https://doi.org/10.25159/3005-2602/13835Keywords:
composites, nanocomposites, surface treatment, dye removal, automotive, synchrotron, hemp fibreAbstract
In this article, we overview a very important type of natural fibre, namely, hemp fibre. We consider the exclusive structure, properties, modification, the composite or nanocomposite formation and exceptional application zones. Industrial hemp fibres have been commonly developed and possess high cellulose amounts. The long hemp fibres can be termed bast or flax fibres. Hemp fibres are eco-friendly, and have light weightiness and stiffness properties. Consequently, to enhance the use of hemp fibres at engineering level, research has focused on improving the mechanical or thermal and high-tech features of these fibres. In doing this, the surface modification or treatment of hemp fibres has been notably considered. The modified fibres have been found valuable for developing certain derived materials such as polymeric composites and nanocomposites in particular. Consequently, including hemp fibres as additives in composite or nanocomposite matrices has been explored for manufacturing high performance ecological, recyclable, biodegradable and sustainable materials. Application areas identified for the hemp and related composites or nanocomposites include the synchrotron and neutron scattering, water treatment aiming dye removal, automobiles, textiles and construction. However, there is insufficient literature on these technologically important fibres and ensuing materials. Comprehensive future efforts may better resolve the challenges regarding reproducibility and long life-cycle high-tech applications of hemp fibres.
Metrics
References
I. Elfaleh et al., “A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials,” Results Eng., vol. 19, p. 101271, 2023, doi: 10.1016/j.rineng.2023.101271. DOI: https://doi.org/10.1016/j.rineng.2023.101271
A. G. D. Schumacher, S. Pequito, and J. Pazour, “Industrial hemp fiber: A sustainable and economical alternative to cotton, J. Clean. Prod., vol. 268, p. 122180, 2020, doi: 10.1016/j.jclepro.2020.122180. DOI: https://doi.org/10.1016/j.jclepro.2020.122180
B. Wang, M. Sain, and K. Oksman, “Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. Comp. Mater., vol. 14, pp. 89–103, 2007, doi: 10.1007/s10443-006-9032-9. DOI: https://doi.org/10.1007/s10443-006-9032-9
R. Sepe, F. Bollino, L. Boccarusso, and F. Caputo, “Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites, Comp.—B: Eng., vol. 133, pp. 210–217, 2018, doi: 10.1016/j.compositesb.2017.09.030. DOI: https://doi.org/10.1016/j.compositesb.2017.09.030
J. P. Manaia, A. T. Manaia, and L. Rodriges, “Industrial hemp fibers: An overview, Fibers, vol. 7, no. 12, p. 106, 2019, doi: 10.3390/fib7120106. DOI: https://doi.org/10.3390/fib7120106
F. Tanasă, M. Zănoagă, C. A. Teacă, M. Nechifor, and A. Shahzad, “Modified hemp fibers intended for fiber‐reinforced polymer composites used in structural applications—A review. I. Methods of modification, Polym. Compos., vol. 41, no. 1, pp. 5–31, 2020, doi: 10.1002/pc.25354. DOI: https://doi.org/10.1002/pc.25354
D. Dai, M. Fan, and P. Collins, “Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers, Ind. Crops Prod., vol. 44, pp. 192–199, 2013, doi: 10.1016/j.indcrop.2012.11.010. DOI: https://doi.org/10.1016/j.indcrop.2012.11.010
O. Bshena, T. D. Heunis, L. M. Dicks, and B. Klumperman, “Antimicrobial fibers: Therapeutic possibilities and recent advances,” Future Med. Chem., vol. 3, no. 14, pp. 1821–1847, 2011, doi: 10.4155/fmc.11.131. DOI: https://doi.org/10.4155/fmc.11.131
R. Iseppi et al., “Chemical characterization and evaluation of the antibacterial activity of essential oils from fibre-type Cannabis sativa L. (hemp),” Molecules, vol. 24, no. 12, p. 2302, 2019, doi: 10.3390/molecules24122302. DOI: https://doi.org/10.3390/molecules24122302
L. Zamora-Mendoza et al., “Antimicrobial properties of plant fibers, Molecules, vol. 27, no. 22, p. 7999, 2022, doi: 10.3390/molecules27227999. DOI: https://doi.org/10.3390/molecules27227999
M. Zimniewska, W. Rozańska, A. Gryszczynska, B. Romanowska, and A. Kicinska-Jakubowska, “Antioxidant potential of hemp and flax fibers depending on their chemical composition, Molecules, vol. 23, no. 8, p. 1993, 2018, doi: 10.3390/molecules23081993. DOI: https://doi.org/10.3390/molecules23081993
Z. Jankauskienė, B. Butkutė, E. Gruzdevienė, J. Cesevičienė, and A. L. Fernando, “Chemical composition and physical properties of dew-and water-retted hemp fibers, Ind. Crops Prod., vol. 75, pp. 206–211, 2015, doi: 10.1016/j.indcrop.2015.06.044. DOI: https://doi.org/10.1016/j.indcrop.2015.06.044
E. Isidore, H. Karim, and I. Ioannou, “Extraction of phenolic compounds and terpenes from Cannabis sativa L. by-products: From conventional to intensified processes,” Antioxid., vol. 10, no. 6, p. 942, 2021, doi: 10.3390/antiox10060942. DOI: https://doi.org/10.3390/antiox10060942
T. D. Tavares, J. C. Antunes, F. Ferreira, and H. P. Felgueiras, “Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications,” Biomolecules, vol. 10, no. 1, p. 148, 2020, doi: 10.3390/biom10010148. DOI: https://doi.org/10.3390/biom10010148
V. Chaudhary, P. K. Bajpai, and S. Maheshwari, “Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications,” J. Nat. Fibers, vol. 15, no. 1, pp. 80–97, 2018, doi: 10.1080/15440478.2017.1320260. DOI: https://doi.org/10.1080/15440478.2017.1320260
L. Chang et al., “Improved antibacterial activity of hemp fibre by covalent grafting of quaternary ammonium groups, R. Soc. Open Sci., vol. 8, no. 3, p. 201904, 2021, doi: 10.1098/rsos.201904. DOI: https://doi.org/10.1098/rsos.201904
A. F. Ahmed, M. Z. Islam, M. S. Mahmud, M. E. Sarker, and M. R. Islam, “Hemp as a potential raw material toward a sustainable world: A review, Heliyon, vol. 8, no. 1, 2022, doi: 10.1016/j.heliyon.2022.e08753. DOI: https://doi.org/10.1016/j.heliyon.2022.e08753
L. Zampori, G. Dotelli, and V. Vernelli, “Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings,” Environ. Sci. Tech., vol. 47, no. 13, pp. 7413–7420, 2013, doi: 10.1021/es401326a. DOI: https://doi.org/10.1021/es401326a
N. Rajak, N. Pandey, Y. Tripathi, and N. Garg, “Hemp usage as a green building material, plastic, and fuel” in Revolutionizing the Potential of Hemp and Its Products in Changing the Global Economy. Springer, 2022, pp. 157–167, doi: 10.1007/978-3-031-05144-9_8. DOI: https://doi.org/10.1007/978-3-031-05144-9_8
C. B. John, A. R. Solamalai, R. Jambulingam, and D. Balakrishnan, “Estimation of fuel properties and characterization of hemp biodiesel using spectrometric techniques, Energy Sources A: Recovery Util. Environ. Eff., pp. 1–18, 2020, doi: 10.1080/15567036.2020.1842559. DOI: https://doi.org/10.1080/15567036.2020.1842559
T. Jami, S. Karade, and L. Singh, “A review of the properties of hemp concrete for green building applications,” J. Clean. Prod., vol. 239, p. 117852, 2019, doi: 10.1016/j.jclepro.2019.117852. DOI: https://doi.org/10.1016/j.jclepro.2019.117852
C. Niyigena et al., “Variability of the mechanical properties of hemp concrete, Mater. Today Commun., vol. 7, pp. 122–133, 2016, doi: 10.1016/j.mtcomm.2016.03.003. DOI: https://doi.org/10.1016/j.mtcomm.2016.03.003
G. Gedik, and O. Avinc, “Hemp fiber as a sustainable raw material source for textile industry: Can we use its potential for more eco-friendly production?” in Sustainability in the Textile and Apparel Industries: Sourcing Natural Raw Materials, 2020, pp. 87–109, doi: 10.1007/978-3-030-38541-5_4. DOI: https://doi.org/10.1007/978-3-030-38541-5_4
G. Crini, E. Lichtfouse, G. Chanet, and N. Morin-Crini, “Traditional and new applications of hemp,” in Sustainable Agriculture Reviews 42: Hemp Production and Applications. Springer, 2020, pp. 37–87, doi: 10.1007/978-3-030-41384-2_2. DOI: https://doi.org/10.1007/978-3-030-41384-2_2
S. Panthapulakkal, and M. Sain, “Studies on the water absorption properties of short hemp-glass fiber hybrid polypropylene composites, J. Comp. Mater., vol. 41, no. 15, pp. 1871–1883, 2007, doi: 10.1177/0021998307069900. DOI: https://doi.org/10.1177/0021998307069900
E. M. Salentijn, Q. Zhang, S. Amaducci, M. Yang, and L. M. Trindade, “New developments in fiber hemp (Cannabis sativa L.) breeding,” Ind. Crops Prod., vol. 68, pp. 32–41, 2015, doi: 10.1016/j.indcrop.2014.08.011. DOI: https://doi.org/10.1016/j.indcrop.2014.08.011
A. Pappu, K. L. Pickering, and V. K. Thakur, “Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding,” Ind. Crops Prod., vol. 137, pp. 260–269, 2019, doi: 10.1016/j.indcrop.2019.05.040. DOI: https://doi.org/10.1016/j.indcrop.2019.05.040
P. Ranalli, and G. Venturi, “Hemp as a raw material for industrial applications, Euphytica, vol. 140, no. 1–2, pp. 1–6, 2004, doi: 10.1007/s10681-004-4749-8. DOI: https://doi.org/10.1007/s10681-004-4749-8
M. Liu, A. Thygesen, J. Summerscales, and A. S. Meyer, “Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review,” Ind. Crops Prod., vol. 108, pp. 660–683, 2017, doi: 10.1016/j.indcrop.2017.07.027. DOI: https://doi.org/10.1016/j.indcrop.2017.07.027
H. N. Dhakal, and Z. Zhang, “The use of hemp fibres as reinforcements in composites” in Biofiber Reinforcements in Composite Materials. Elsevier, 2015, pp. 86–103, doi: 10.1533/9781782421276.1.86. DOI: https://doi.org/10.1533/9781782421276.1.86
R. Dhandapani, and S. Sharma, “Environmentally benign pretreatments for producing microfibrillated cellulose fibers from hemp” in Lightweight Materials from Biopolymers and Biofibers. ACS Publications, 2014, pp. 69–87, doi: 10.1021/bk-2014-1175.ch005. DOI: https://doi.org/10.1021/bk-2014-1175.ch005
D. Crônier, B. Monties, and B. Chabbert, “Structure and chemical composition of bast fibers isolated from developing hemp stem,” J. Agric. Food Chem., vol. 53, no. 21, pp. 8279–8289, 2005, doi: 10.1021/jf051253k. DOI: https://doi.org/10.1021/jf051253k
K. Liu, H. Takagi, and Z. Yang, “Evaluation of transverse thermal conductivity of Manila hemp fiber in solid region using theoretical method and finite element method,” Mater. Des., vol. 32, no. 8–9, pp. 4586–4589, 2011, doi: 10.1016/j.matdes.2011.04.006. DOI: https://doi.org/10.1016/j.matdes.2011.04.006
T. Thamae, S. Aghedo, C. Baillie, and D. Matovic, “Tensile properties of hemp and Agave americana fibres” in Handbook of Tensile Properties of Textile and Technical Fibres. Elsevier, 2009, pp. 73–99, doi: 10.1533/9781845696801.1.73. DOI: https://doi.org/10.1533/9781845696801.1.73
D. Hepworth, R. Hobson, D. Bruce, and J. Farrent, “The use of unretted hemp fibre in composite manufacture,” Compos.—A: Appl. Sci., vol. 31, no. 11, pp. 1279–1283, 2000, doi: 10.1016/S1359-835X(00)00098-1. DOI: https://doi.org/10.1016/S1359-835X(00)00098-1
R. Malkapuram, V. Kumar, and Y. S. Negi, “Recent development in natural fiber reinforced polypropylene composites,” J. Reinf. Plast. Compos., vol. 28, no. 10, pp. 1169–1189, 2009, doi: 10.1177/0731684407087759. DOI: https://doi.org/10.1177/0731684407087759
F. V. Ferreira, I.F. Pinheiro, S. F. de Souza, L. H. Mei, and L. M. Lona, “Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review,” J. Comp. Sci., vol. 3, no. 2, p. 51, 2019, doi: 10.3390/jcs3020051. DOI: https://doi.org/10.3390/jcs3020051
M. Bar, R. Alagirusamy, and A. Das, “Flame retardant polymer composites,” Fibers Polym., vol. 16, pp. 705–717, 2015, doi: 10.1007/s12221-015-0705-6. DOI: https://doi.org/10.1007/s12221-015-0705-6
A. B. Thomsen, S. Rasmussen, V. Bohn, K. V. Nielsen, and A. Thygesen, Hemp Raw Materiala: The Effect of Cultivar, Growth Conditions and Pretreatment on the Chemical Composition of the Fibres. Risø DTU-National Laboratory for Sustainable Energy Roskilde, Denmark, 2005.
L. Triolo, “Materie prime non legnose per lindustria cartaria,” Italia Agricola, vol. 1, pp. 33–61, 1980.
A. Thygesen, A. B. Thomsen, G. Daniel, and H. Lilholt, “Comparison of composites made from fungal defibrated hemp with composites of traditional hemp yarn,” Ind. Crops Prod., vol. 25, no. 2, pp. 147–159, 2007, doi: 10.1016/j.indcrop.2006.08.002. DOI: https://doi.org/10.1016/j.indcrop.2006.08.002
M. Zimniewska, “Hemp fibre properties and processing target textile: A review,” Mater., vol. 15, no. 5, p. 1901, 2022, doi: 10.3390/ma15051901. DOI: https://doi.org/10.3390/ma15051901
P. Cerino et al., “A review of hemp as food and nutritional supplement,” Cannabis Cannabinoid Res., vol. 6, no. 1, pp. 19–27, 2021, doi: 10.1089/can.2020.0001. DOI: https://doi.org/10.1089/can.2020.0001
M. Y. Naeem, F. Corbo, P. Crupi, and M. L. Clodoveo, “Hemp: An alternative source for various industries and an emerging tool for functional food and pharmaceutical sectors,” Processes, vol. 11, no. 3, p. 718, 2023, doi: 10.3390/pr11030718. DOI: https://doi.org/10.3390/pr11030718
A. Keller, M. Leupin, V. Mediavilla, and E. Wintermantel, “Influence of the growth stage of industrial hemp on chemical and physical properties of the fibres,” Ind. Crops Prod., vol. 13, no. 1, pp. 35–48, 2001, doi: 10.1016/S0926-6690(00)00051-0. DOI: https://doi.org/10.1016/S0926-6690(00)00051-0
D. Vodolazska, and C. Lauridsen, “Effects of dietary hemp seed oil to sows on fatty acid profiles, nutritional and immune status of piglets,” J. Anim. Sci. Biotechnol., vol. 11, pp. 1–18, 2020, doi: 10.1186/s40104-020-0429-3. DOI: https://doi.org/10.1186/s40104-020-0429-3
K. Promhuad et al., “Applications of hemp polymers and extracts in food, textile and packaging: A review,” Polymers, vol. 14, no. 20, p. 4274, 2022, doi: 10.3390/polym14204274. DOI: https://doi.org/10.3390/polym14204274
T. Gurunathan, S. Mohanty, and S. K. Nayak, “A review of the recent developments in biocomposites based on natural fibres and their application perspectives,” Compos.—A: Appl. Sci., vol. 77, pp. 1–25, 2015, doi: 10.1016/j.compositesa.2015.06.007. DOI: https://doi.org/10.1016/j.compositesa.2015.06.007
F. Bollino, V. Giannella, E. Armentani, and R. Sepe, “Mechanical behavior of chemically-treated hemp fibers reinforced composites subjected to moisture absorption,” J. Mater. Res. Technol., vol. 22, pp. 762–775, 2023, doi: 10.1016/j.jmrt.2022.11.152. DOI: https://doi.org/10.1016/j.jmrt.2022.11.152
M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid) (PLA) and kenaf fibers,” Compos. Sci. Technol., vol. 68, no. 2, pp. 424–432, 2008, doi: 10.1016/j.compscitech.2007.06.022. DOI: https://doi.org/10.1016/j.compscitech.2007.06.022
K. G. Satyanarayana, G. G. Arizaga, and F. Wypych, “Biodegradable composites based on lignocellulosic fibers—An overview,” Prog. Polym. Sci., vol. 34, no. 9, pp. 982–1021, 2009, doi: 10.1016/j.progpolymsci.2008.12.002. DOI: https://doi.org/10.1016/j.progpolymsci.2008.12.002
F. M. Al-Oqla, and S. Sapuan, “Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry,” J. Clean. Prod., vol. 66, pp. 347–354, 2014, doi: 10.1016/j.jclepro.2013.10.050. DOI: https://doi.org/10.1016/j.jclepro.2013.10.050
V. L. Narayana, and L. B. Rao, “Influence of alkali treatment and stacking sequence on mechanical, physical, and thermal characteristics of hemp and palmyra-reinforced hybrid composites,” J. Nat. Fibers, vol. 20, no. 2, p. 2213908, 2023, doi: 10.1080/15440478.2023.2213908. DOI: https://doi.org/10.1080/15440478.2023.2213908
M. Ramesh, C. Deepa, G. Arpitha, and V. Gopinath, “Effect of hybridization on properties of hemp-carbon fibre-reinforced hybrid polymer composites using experimental and finite element analysis,” World J. Eng., vol. 16, no. 2, pp. 248–259, 2019, doi: 10.1108/WJE-04-2018-0125. DOI: https://doi.org/10.1108/WJE-04-2018-0125
L. Y. Mwaikambo, and M. P. Ansell, “The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement,” Die Angewandte Makromolekulare Chemie, vol. 272, no. 1, pp. 108–116, 1999, doi: 10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9. DOI: https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
G. Beckermann, and K. L. Pickering, “Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification,” Comp.—A: Appl. Sci., vol. 39, no. 6, pp. 979–988, 2008, doi: 10.1016/j.compositesa.2008.03.010. DOI: https://doi.org/10.1016/j.compositesa.2008.03.010
G. Mehta, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin,” J. Appl. Polym. Sci., vol. 99, no. 3, pp. 1055–1068, 2006, doi: 10.1002/app.22620. DOI: https://doi.org/10.1002/app.22620
V. K. Thakur, and M. K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites,” Carbohydr. Polym., vol. 109, pp. 102–117, 2014, doi: 10.1016/j.carbpol.2014.03.039. DOI: https://doi.org/10.1016/j.carbpol.2014.03.039
B. M. Pejić, A. D. Kramar, B. M. Obradović, M. M. Kuraica, A. A. Žekić, and M. M. Kostić, “Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.),” Carbohydr. Polym., vol. 236, p. 116000, 2020, doi: 10.1016/j.carbpol.2020.116000. DOI: https://doi.org/10.1016/j.carbpol.2020.116000
M. Liu, D. Fernando, A. S. Meyer, B. Madsen, G. Daniel, and A. Thygesen, “Characterization and biological depectinization of hemp fibers originating from different stem sections,” Ind. Crops Prod., vol. 76, pp. 880–891, 2015, doi: 10.1016/j.indcrop.2015.07.046. DOI: https://doi.org/10.1016/j.indcrop.2015.07.046
M. George, P. G. Mussone, and D. C. Bressler, “Improving the accessibility of hemp fibres using caustic to swell the macrostructure for enzymatic enhancement,” Ind. Crops Prod., vol. 67, pp. 74–80, 2015, doi: 10.1016/j.indcrop.2014.10.043. DOI: https://doi.org/10.1016/j.indcrop.2014.10.043
M. A. Sawpan, K. L. Pickering, and A. Fernyhough, “Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites,” Comp.—A: Appl. Sci., vol. 42, no. 3, pp. 310–319, 2011, doi: 10.1016/j.compositesa.2010.12.004. DOI: https://doi.org/10.1016/j.compositesa.2010.12.004
D. P. Ferreira, J. Cruz, and R. Fangueiro, “Surface modification of natural fibers in polymer composites,” in Green Composites for Automotive Applications. Elsevier, 2019, pp. 3–41, doi: 10.1016/B978-0-08-102177-4.00001-X. DOI: https://doi.org/10.1016/B978-0-08-102177-4.00001-X
M. Mochane et al., “Recent progress on natural fiber hybrid composites for advanced applications: A review,” EXPRESS Polym. Lett., vol. 13, no. 2, pp. 159–198, 2019, doi: 10.3144/expresspolymlett.2019.15. DOI: https://doi.org/10.3144/expresspolymlett.2019.15
M. Sain, P. Suhara, S. Law, and A. Bouilloux, “Interface modification and mechanical properties of natural fiber-polyolefin composite products,” J. Reinf. Plast. Compos., vol. 24, no. 2, pp. 121–130, 2005, doi: 10.1177/0731684405041717. DOI: https://doi.org/10.1177/0731684405041717
T. Sullins, S. Pillay, A. Komus, and H. Ning, “Hemp fiber reinforced polypropylene composites: The effects of material treatments,” Compos. B. Eng., vol. 114, pp. 15–22, 2017, doi: 10.1016/j.compositesb.2017.02.001. DOI: https://doi.org/10.1016/j.compositesb.2017.02.001
T. Keener, R. Stuart, and T. Brown, “Maleated coupling agents for natural fibre composites,” Compos.—A: Appl. Sci., vol. 35, no. 3, pp. 357–362, 2004, doi: 10.1016/j.compositesa.2003.09.014. DOI: https://doi.org/10.1016/j.compositesa.2003.09.014
G. Koronis, A. Silva, and M. Fontul, “Green composites: A review of adequate materials for automotive applications,” Compos. B. Eng., vol. 44, no. 1, pp. 120–127, 2013, doi: 10.1016/j.compositesb.2012.07.004. DOI: https://doi.org/10.1016/j.compositesb.2012.07.004
G. Sèbe, N. S. Cetin, C. A. Hill, and M. Hughes, “RTM hemp fibre-reinforced polyester composites,” Appl. Compos. Mater., vol. 7, no. 5, pp. 341–349, 2000, doi: 10.1023/A:1026538107200. DOI: https://doi.org/10.1023/A:1026538107200
X. Peng, M. Fan, J. Hartley, and M. Al-Zubaidy, “Properties of natural fiber composites made by pultrusion process,” J. Compos. Mater., vol. 46, no. 2, pp. 237–246, 2012, doi: 10.1177/0021998311410474. DOI: https://doi.org/10.1177/0021998311410474
A. K. Rana, E. Frollini, and V. K. Thakur, “Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization,” Int. J. Biol. Macromol., vol. 182, pp. 1554–1581, 2021, doi: 10.1016/j.ijbiomac.2021.05.119. DOI: https://doi.org/10.1016/j.ijbiomac.2021.05.119
F. Sarasini et al., “Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres,” Compos. Struct., vol. 167, pp. 20–29, 2017, doi: 10.1016/j.compstruct.2017.01.071. DOI: https://doi.org/10.1016/j.compstruct.2017.01.071
J. Yang, Y. C. Ching, and C. H. Chuah, “Applications of lignocellulosic fibers and lignin in bioplastics: A review,” Polymers, vol. 11, no. 5, p. 751, 2019, doi: 10.3390/polym11050751. DOI: https://doi.org/10.3390/polym11050751
A. Maslinda, M. A. Majid, M. Ridzuan, M. Afendi, and A. Gibson, “Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites,” Compos. Struct., vol. 167, pp. 227–237, 2017, doi: 10.1016/j.compstruct.2017.02.023. DOI: https://doi.org/10.1016/j.compstruct.2017.02.023
L. Stelea, I. Filip, G. Lisa, M. Ichim, M. Drobotă, C. Sava, and A. Mureșan, “Characterisation of hemp fibres reinforced composites using thermoplastic polymers as matrices,” Polymers, vol. 14, no. 3, pp. 481, 2022, doi: 10.3390/polym14030481. DOI: https://doi.org/10.3390/polym14030481
A. Shahzad, “Hemp fiber and its composites-a review,” J. Compos. Mater., vol. 46, no. 8, pp. 973–986, 2012, doi: 10.1177/0021998311413623. DOI: https://doi.org/10.1177/0021998311413623
T. Devakul et al., “Magic-angle helical trilayer graphene,” Sci. Adv., vol. 9, no. 36, p. eadi6063, 2023, doi: 10.1126/sciadv.adi6063. DOI: https://doi.org/10.1126/sciadv.adi6063
M. Chakkour, M. Ould Moussa, I. Khay, M. Balli, and T. Ben Zineb, “Towards widespread properties of cellulosic fibers composites: A comprehensive review,” J. Reinf. Plast. Compos., vol. 42, no. 5–6, pp. 222–263, 2023, doi: 10.1177/07316844221112974. DOI: https://doi.org/10.1177/07316844221112974
J. Wang, Y. Zhao, X. Cai, M. Tian, L. Qu, and S. Zhu, “Microwave-assisted one-step degumming and modification of hemp fiber with graphene oxide,” J. Nat. Fibers, vol. 19, no. 2, pp. 416–423, 2022, doi: 10.1080/15440478.2020.1745121. DOI: https://doi.org/10.1080/15440478.2020.1745121
R. Cruz-Silva et al., “Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling,” ACS Nano, vol. 8, no. 6, pp. 5959–5967, 2014, doi: 10.1021/nn501098d. DOI: https://doi.org/10.1021/nn501098d
P. H. P. da Silveira et al., “Effect of alkaline treatment and graphene oxide coating on thermal and chemical properties of hemp (Cannabis sativa L.) fibers,” J. Nat. Fibers, vol. 19, no. 15, pp. 12168–12181, 2022, doi: 10.1080/15440478.2022.2053265. DOI: https://doi.org/10.1080/15440478.2022.2053265
F. Javanshour et al., “Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy composites,” Compos.—A: Appl. Sci., vol. 142, p. 106270, 2021, doi: 10.1016/j.compositesa.2020.106270. DOI: https://doi.org/10.1016/j.compositesa.2020.106270
G. Z. Kyzas, E. Christodoulou, and D. N. Bikiaris, “Basic dye removal with sorption onto low-cost natural textile fibers,” Processes, vol. 6, no. 9, p. 166, 2018, doi: 10.3390/pr6090166. DOI: https://doi.org/10.3390/pr6090166
L. Jino et al., “Review on natural fibre composites reinforced with nanoparticles,” Mater. Today: Proc., 2023, doi: 10.1016/j.matpr.2023.01.126. DOI: https://doi.org/10.1016/j.matpr.2023.01.126
A. Olaru, T. Malutan, C. M. Ursescu, M. Geba, and L. Stratulat, “Structural changes in hemp fibers following temperature, humidity and UV or gamma-ray radiation exposure,” Cellul. Chem. Technol., vol. 50, no. 1, pp. 31–39, 2016.
O. Güven, S. N. Monteiro, E. A. Moura, and J. W. Drelich, “Re-emerging field of lignocellulosic fiber-polymer composites and ionizing radiation technology in their formulation,” Polym. Rev., vol. 56, no. 4, pp. 702–736, 2016, doi: 10.1080/15583724.2016.1176037. DOI: https://doi.org/10.1080/15583724.2016.1176037
A. Santoni et al., “Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres,” Appl. Acoust., vol. 150, pp. 279–289, 2019, doi: 10.1016/j.apacoust.2019.02.022. DOI: https://doi.org/10.1016/j.apacoust.2019.02.022
R. Malinowski, A. Raszkowska-Kaczor, K. Moraczewski, W. Głuszewski, V. Krasinskyi, and L. Wedderburn, “The structure and mechanical properties of hemp fibers-reinforced poly (ε-caprolactone) composites modified by electron beam irradiation,” Appl. Sci., vol. 11, no. 12, p. 5317, 2021, doi: 10.3390/app11125317. DOI: https://doi.org/10.3390/app11125317
M. Scutaru, M. Baba, and M. Baritz, “Irradiation influence on a new hybrid hemp bio-composite,” J. Optoelectron. Adv. Mater., vol. 16, pp. 887–891, 2014.
H. Zhang, Z. Zhong, and L. Feng, “Advances in the performance and application of hemp fiber,” IJSSST, vol. 17, no. 9, p. 18, 2016.
A. Bourmaud et al., “Elucidating the formation of structural defects in flax fibres through synchrotron X-ray phase-contrast microtomography,” Ind. Crops Prod., vol. 184, p. 115048, 2022, doi: 10.1016/j.indcrop.2022.115048. DOI: https://doi.org/10.1016/j.indcrop.2022.115048
L. Kozlova, A. Petrova, A. Chernyad’ev, V. Salnikov, and T. Gorshkova, “On the origin of bast fiber dislocations in flax,” Ind. Crops Prod., vol. 176, p. 114382, 2022, doi: 10.1016/j.indcrop.2021.114382. DOI: https://doi.org/10.1016/j.indcrop.2021.114382
Y. Nishiyama, P. Langan, and H. Chanzy, “Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction,” J. Am. Chem. Soc., vol. 124, no. 31, pp. 9074–9082, 2002, doi: 10.1021/ja0257319. DOI: https://doi.org/10.1021/ja0257319
M. Ragoubi, M. Lecoublet, M. Khennache, C. Poilane, and N. Leblanc, “Multi scale analysis of the retting and process effect on the properties of flax bio-based composites,” Polymers, vol. 15, no. 11, p. 2531, 2023, doi: 10.3390/polym15112531. DOI: https://doi.org/10.3390/polym15112531
M. Grégoire et al., “Comparing flax and hemp fibres yield and mechanical properties after scutching/hackling processing,” Ind. Crops Prod., vol. 172, p. 114045, 2021, doi: 10.1016/j.indcrop.2021.114045. DOI: https://doi.org/10.1016/j.indcrop.2021.114045
L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest, “Why are designers fascinated by flax and hemp fibre composites?” Compos.—A: Appl. Sci., vol. 83, pp. 193–205, 2016, doi: 10.1016/j.compositesa.2015.11.004. DOI: https://doi.org/10.1016/j.compositesa.2015.11.004
M. Hughes, “Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites,” J. Mater. Sci., vol. 47, pp. 599–609, 2012, doi: 10.1007/s10853-011-6025-3. DOI: https://doi.org/10.1007/s10853-011-6025-3
A. du Plessis et al., “Properties and applications of additively manufactured metallic cellular materials: A review,” Prog. Mater. Sci., vol. 125, p. 100918, 2022, doi: 10.1016/j.pmatsci.2021.100918. DOI: https://doi.org/10.1016/j.pmatsci.2021.100918
D. Quereilhac et al., “Exploiting synchrotron X-ray tomography for a novel insight into flax-fibre defects ultrastructure,” Ind. Crops Prod., vol. 198, p. 116655, 2023, doi: 10.1016/j.indcrop.2023.116655. DOI: https://doi.org/10.1016/j.indcrop.2023.116655
C. Xia et al., “Latest advances in layered covalent organic frameworks for water and wastewater treatment,” Chemosphere, p. 138580, 2023, doi: 10.1016/j.chemosphere.2023.138580. DOI: https://doi.org/10.1016/j.chemosphere.2023.138580
D. T. D’Souza, R. Tiwari, A. K. Sah, and C. Raghukumar, “Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes,” Enzyme Microb. Technol., vol. 38, nos. 3–4, pp. 504–511, 2006, doi: 10.1016/j.enzmictec.2005.07.005. DOI: https://doi.org/10.1016/j.enzmictec.2005.07.005
I. Khan et al., “Review on methylene blue: Its properties, uses, toxicity and photodegradation,” Water, vol. 14, no. 2, p. 242, 2022, doi: 10.3390/w14020242. DOI: https://doi.org/10.3390/w14020242
A. Bafana, S. S. Devi, and T. Chakrabarti, “Azo dyes: Past, present and the future,” Environ. Rev., vol. 19, pp. 350–371, 2011, doi: 10.1139/a11-018. DOI: https://doi.org/10.1139/a11-018
S. Mim, M. A. Hashem, and S. Payel, “Coagulation-adsorption-oxidation for removing dyes from tannery wastewater,” Environ. Monit. Assess., vol. 195, no. 6, p. 695, 2023, doi: 10.1007/s10661-023-11309-3. DOI: https://doi.org/10.1007/s10661-023-11309-3
F. Haq et al., “Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation,” Chemosphere, vol. 321, p. 138000, 2023, doi: 10.1016/j.chemosphere.2023.138000. DOI: https://doi.org/10.1016/j.chemosphere.2023.138000
I. C. M. Candido, I. C. B. Pires, and H. P. de Oliveira, “Natural and synthetic fiber‐based adsorbents for water remediation,” CLEAN—Soil, Air, Water, vol. 49, no. 6, p. 2000189, 2021, doi: 10.1002/clen.202000189. DOI: https://doi.org/10.1002/clen.202000189
N. Morin-Crini et al., “Hemp-based adsorbents for sequestration of metals: A review,” Environ. Chem. Lett., vol. 17, pp. 393–408, 2019, doi: 10.1007/s10311-018-0812-x. DOI: https://doi.org/10.1007/s10311-018-0812-x
G. Viscusi, E. Lamberti, and G. Gorrasi, “Design of a hybrid bio-adsorbent based on sodium alginate/halloysite/hemp hurd for methylene blue dye removal: Kinetic studies and mathematical modeling,” Colloids Surf. A Physicochem. Eng. Asp., vol. 633, p. 127925, 2022, doi: 10.1016/j.colsurfa.2021.127925. DOI: https://doi.org/10.1016/j.colsurfa.2021.127925
F. El Mansouri et al., “Efficient removal of eriochrome black T dye using activated carbon of waste hemp (Cannabis sativa L.) grown in northern Morocco enhanced by new mathematical models,” Separations, vol. 9, no. 10, p. 283, 2022, doi: 10.3390/separations9100283. DOI: https://doi.org/10.3390/separations9100283
G. Viscusi, E. Lamberti, and G. Gorrasi, “Hemp fibers modified with graphite oxide as green and efficient solution for water remediation: Application to methylene blue,” Chemosphere, vol. 288, p. 132614, 2022, doi: 10.1016/j.chemosphere.2021.132614. DOI: https://doi.org/10.1016/j.chemosphere.2021.132614
L. Nunes et al., “Nonwood bio-based materials,” in Performance of Bio-Based Building Materials, D. Jones and C. Brischke, Eds., 2017, pp. 97–186, doi: 10.1016/B978-0-08-100982-6.00003-3. DOI: https://doi.org/10.1016/B978-0-08-100982-6.00003-3
P. W. Lee, and P. Filip, “Friction and wear of Cu-free and Sb-free environmental friendly automotive brake materials,” Wear, vol. 302, no. 1–2, pp. 1404–1413, 2013, doi: 10.1016/j.wear.2012.12.046. DOI: https://doi.org/10.1016/j.wear.2012.12.046
D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers, vol. 11, no. 10, p. 1667, 2019, doi: 10.3390/polym11101667. DOI: https://doi.org/10.3390/polym11101667
N. Nurazzi et al., “A review on mechanical performance of hybrid natural fiber polymer composites for structural applications,” Polymers, vol. 13, no. 13, p. 2170, 2021, doi: 10.3390/polym13132170. DOI: https://doi.org/10.3390/polym13132170
K. L. Pickering, M. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos.—A: Appl. Sci., vol. 83, pp. 98–112, 2016, doi: 10.1016/j.compositesa.2015.08.038. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038
K. F. Hasan et al., “Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract,” Compos. Interfaces, vol. 29, no. 5, pp. 503–521, 2022, doi: 10.1080/09276440.2021.1979752. DOI: https://doi.org/10.1080/09276440.2021.1979752
G. Crini, E. Lichtfouse, G. Chanet, and N. Morin-Crini, “Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review,” Environ. Chem. Lett., vol. 18, no. 5, pp. 1451–1476, 2020, doi: 10.1007/s10311-020-01029-2. DOI: https://doi.org/10.1007/s10311-020-01029-2
H. Wang, R. Postle, R. Kessler, and W. Kessler, “Removing pectin and lignin during chemical processing of hemp for textile applications,” Text. Res. J., vol. 73, no. 8, pp. 664–669, 2003, doi: 10.1177/004051750307300802. DOI: https://doi.org/10.1177/004051750307300802
P. Nováková, “Use of technical hemp in the construction industry,” MATEC Web Conf., vol. 146, p. 03011, 2018, doi: 10.1051/matecconf/201814603011. DOI: https://doi.org/10.1051/matecconf/201814603011
E. Awwad, B. Hamad, M. Mabsout, and H. Khatib, “Sustainable construction material using hemp fibers-preliminary study,” presented at the Second Int. Conf on Sust. Const. Mater. Technol., Ancona, Italy, 2010.
A. T. Le, C. Maalouf, T. H. Mai, E. Wurtz, and F. Collet, “Transient hygrothermal behaviour of a hemp concrete building envelope,” Energy Build., vol. 42, no. 10, pp. 1797–1806, 2010, doi: 10.1016/j.enbuild.2010.05.016. DOI: https://doi.org/10.1016/j.enbuild.2010.05.016
T. Jami, D. Rawtani, and Y. K. Agrawal, “Hemp concrete: carbon-negative construction,” Emerg. Mater. Res., vol. 5, no. 2, pp. 240–247, 2016, doi: 10.1680/jemmr.16.00122. DOI: https://doi.org/10.1680/jemmr.16.00122
E. Awwad, M. Mabsout, B. Hamad, M. T. Farran, and H. Khatib, “Studies on fiber-reinforced concrete using industrial hemp fibers,” Constr. Build. Mater., vol. 35, pp. 710–717, 2012, doi: 10.1016/j.conbuildmat.2012.04.119. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.119
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ayesha Kausar, Ishaq Ahmad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-11
Published 2023-11-17