Metal Nanoparticles: Synthesis Approach, Types and Applications – A Mini Review

Authors

DOI:

https://doi.org/10.25159/NanoHorizons.87a973477e35

Keywords:

nanoparticles, structural morphology, applications, green synthesis

Abstract

The study of nanoparticles has grown in significance during the last several years. Nanoparticles are a kind of material that is composed of very tiny particles. Nanoparticle characteristics vary greatly depending on their size and form. The surface of a nanoparticle significantly affects its optical, mechanical, magnetic, and other characteristics. Nanoparticles are categorised according to their size, origin and chemical composition. We created nanoparticles using both top-down and bottom-up techniques. In this article, we discuss various different methods for creating nanomaterials in this article, such as sol-gel processes, gas condensation, vacuum deposition and vaporisation, chemical vapour deposition and condensate, mechanical attrition, chemical precipitation, electrodeposition, and chemical vapour condensation. When it comes to creating nanoparticles, green synthesis is one of the most effective approaches. In this article, we explore eco-friendly techniques for manufacturing alloy nanoparticles, silver, gold, silver oxide and silver sulphide. We also explore the process by which microorganisms in this setting produce nanoparticles. Size and form must be maintained under certain conditions. We consider ways in which to enhance the production of nanoparticles in the future. The risks posed by nanoparticles and the ways in which to mitigate them were also taken into account.

Metrics

Metrics Loading ...

References

N. Filipović et al., “Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure,” Front. Bioeng. Biotechnol., vol. 8, 2021, doi: 10.3389/fbioe.2020.624621.

L. H. Madkour, “Introduction to nanotechnology (NT) and nanomaterials (NMs),” in Nanoelectronic Materials: Fundamentals and Applications, Springer Nature, 1–47, 2019, doi: 10.1007/978-3-030-21621-4_1.

M. N. Atalar et al., “Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications,” Part. Sci. Technol., vol. 40, no. 5, pp. 589–597, 2022, doi: 10.1080/02726351.2021.1977443.

K. D. O. Santos, W. C. Elias, A. M. Signori, F. C. Giacomelli, H. Yang and J. B. Domingos, “Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems,” J. Phys. Chem. C, vol. 116, no. 7, pp. 4594–4604, 2012, doi: 10.1021/jp2087169.

F. de Gaetano, L. Ambrosio, M. G. Raucci, A. Marotta and M. Catauro, “Sol-gel processing of drug delivery materials and release kinetics,” J. Mater. Sci. Mater. Med., vol. 16, no. 3, pp. 261–265, 2005, doi: 10.1007/s10856-005-6688-x.

J. M. Burkart, A. Bleyer and W. Chen, “Peritoneal catheter exit-site and tunnel infections in peritoneal dialysis in adults,” UpToDate, 2019, https://medilib.ir/uptodate/show/1888.

M. L. Simeral et al., “Effects of conformational variation on structural insights from solution-phase surface-enhanced Raman spectroscopy,” J. Phys. Chem. B, vol. 125, no. 8, pp. 2031–2041, 2021, doi: 10.1021/acs.jpcb.0c10576.

A. M. Awwad, N. M. Salem and A. O. Abdeen, “Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity,” Int. J. Ind. Chem., vol. 4, no. 1, pp. 1–6, 2013, doi: 10.1186/2228-5547-4-29.

P. Banerjee, M. Satapathy, A. Mukhopahayay and P. Das, “Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis,” Bioresour. Bioprocess., vol. 1, no. 1, pp. 1–10, 2014, doi: 10.1186/s40643-014-0003-y.

S. Navaladian, B. Viswanathan, R. P. Viswanath and T. K. Varadarajan, “Thermal decomposition as route for silver nanoparticles,” Nanoscale Res. Lett., vol. 2, no. 1, pp. 44–48, 2007, doi: 10.1007/s11671-006-9028-2.

P. Rajasekharreddy, P. U. Rani and B. Sreedhar, “Qualitative assessment of silver and gold nanoparticle synthesis in various plants: A photobiological approach,” J. Nanopart. Res., vol. 12, no. 5, pp. 1711–1721, 2010, doi: 10.1007/s11051-010-9894-5.

P. Phanjom and G. Ahmed, “Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations,” Nanosci. Nanotechnol., vol. 5, no. 1, pp. 14–21, 2015, doi: 10.5923/j.nn.20150501.03.

V. T. P. Vinod, P. Saravanan, B. Sreedhar, D. K. Devi and R. B. Sashidhar, “A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium),” Colloids Surf. B, vol. 83, no. 2, pp. 291–298, 2011, doi: 10.1016/j.colsurfb.2010.11.035.

G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma and R. P. Singh, “Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity,” J. Nanopart. Res., vol. 13, no. 7, pp. 2981–2988, 2011, doi: 10.1007/s11051-010-0193-y.

K. Roy, C. K. Sarkar and C. K. Ghosh, “Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: Spectral analysis of the particles and antibacterial study,” Appl. Nanosci., vol. 5, no. 8, pp. 945–951, 2015, doi: 10.1007/s13204-014-0393-3.

L. Christensen, S. Vivekanandhan, M. Misra and A. K. Mohanty, “Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size,” Adv. Mater. Lett., vol. 2, no. 6, pp. 429–434, 2011, doi: 10.5185/amlett.2011.4256.

R. Sathyavathi, M. B. Krishna, S. V. Rao, R. Saritha and D. N. Rao, “Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics,” Adv. Sci. Lett., vol. 3, no. 2, pp. 138–143, 2010, doi: 10.1166/asl.2010.1099.

G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma and R. P. Singh, “Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity,” J. Nanopart. Res., vol. 13, no. 7, pp. 2981–2988, 2011, doi: 10.1007/s11051-010-0193-y.

M. Z. H. Khan, F. K. Tareq and M. N. A. M. Roki, “GREEN SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES USING CORIANDRUM SATIVUM LEAF EXTRACT,” Journal of Engineering Science and Technology Vol. 13, No. 1 (2018) 158 – 166.

J. L. Arias, K. Silva, A. Neira-Carrillo, L. Ortiz, J. I. Arias, N. Butto and M. S. Fernández, “Polycarboxylated eggshell membrane scaffold as template for calcium carbonate mineralization,” Crystals, vol. 10, no. 9, p. 797, 2020, doi: 10.3390/cryst10090797.

C. F. Böhm, J. Harris, P. I. Schodder and S. E. Wolf, “Bioinspired materials: From living systems to new concepts in materials chemistry,” Mater., vol. 12, no. 13, p. 2117, 2019, doi: 10.3390/ma12132117.

X. Zhang, S. Yan, R. D. Tyagi and R. Y. Surampalli, “Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates,” Chemosphere, vol. 82, no. 4, pp. 489–494, 2011, doi: 10.1016/j.chemosphere.2010.10.023.

C. Merzbacher, “National nanotechnology initiative: A model for advancing revolutionary technologies,” in Women in Nanotechnology: Contributions from the Atomic Level and Up. Springer, 2020, pp. 121–133, doi: 10.1007/978-3-030-19951-7_9.

G. Reiss and A. Hutten, “Magnetic nanoparticles,” in Handbook of Nanophysics: Nanoparticles and Quantum Dots. CRC Press, 2010.

F. A. Khan, Biotechnology Fundamentals. CRC Press, 2012.

P. S. Rawson, Ceramics. University of Pennsylvania Press, 1984, doi: 10.9783/9780812207347.

M. Faraday, “Experimental relations of gold (and other metals) to light,” Phil. Trans. R. Soc. Lond, vol. 147, pp. 145–181, 1857, doi: 10.1098/rstl.1857.0011.

G. T. Beilby, “The effects of heat and of solvents on thin films of metal,” Proc. R. Soc. A, vol. 72, no. 477–486, pp. 226–235, 1903, doi: 10.1098/rspl.1903.0046.

T. Turner, “Transparent silver and other metallic films,” Proc. R. Soc. A, vol. 81, no. 548, pp. 301–310, 1908, doi: 10.1098/rspa.1908.0084.

Y. L. Hewakuruppu et al., “Plasmonic ‘pump-probe’ method to study semi-transparent nanofluids,” Applied Optics, vol. 52, no. 24, pp. 6041–6050, 2013, doi: 10.1364/AO.52.006041.

Ph. Buffat and J-P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A, vol. 13, no. 6, pp. 2287–2298, 1976, doi: 10.1103/PhysRevA.13.2287.

J. Wu et al., “Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars,” Nano Energy, vol. 13, pp. 827–835, 2015, doi: 10.1016/j.nanoen.2015.02.012.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep., vol. 7, no. 1, pp. 7696, 2017, doi: 10.1038/s41598-017-08077-9.

M. A. Mitchnick, D. Fairhurst and S. R. Pinnell, “Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent,” J. Am. Acad. Dermatol., vol. 40, no. 1, pp. 85–90, 1999, doi: 10.1016/S0190-9622(99)70532-3.

B. Evans, “Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach,” J. Comput. Phys., vol. 352, pp: 123–141, 2018, doi: 10.1016/j.jcp.2017.09.038.

A. Luchini et al., “Smart hydrogel particles: Biomarker harvesting: One-step affinity purification, size exclusion, and protection against degradation,” Nano Lett., vol. 8, no. 1, pp. 350–361, 2008, doi: 10.1021/nl072174l.

A. Schröfel, G. Kratošová, I. Šafařík, M. Šafaříková, L. Raška and L. M. Shor, “Applications of biosynthesized metallic nanoparticles – A review,” Acta Biomater., vol. 10, no. 10, pp. 4023–4042, 2014, doi: 10.1016/j.actbio.2014.05.022.

P. Singh, Y. J. Kim, D. Zhang and D. C. Yang, “Biological synthesis of nanoparticles from plants and microorganisms,” Trends Biotechnol., vol. 34, no. 7, pp. 588–599, 2016, doi: 10.1016/j.tibtech.2016.02.006.

K. Byrappa, S. Ohara and T. Adschiri, “Nanoparticles synthesis using supercritical fluid technology – Towards biomedical applications,” Adv. Drug Deliv. Rev., vol. 60, no. 3, pp. 299–327, 2008, doi: 10.1016/j.addr.2007.09.001.

X. Li, H. Xu, Z. S. Chen and G. Chen, “Biosynthesis of nanoparticles by microorganisms and their applications,” J. Nanomater., vol. 2011, pp. 1–16, 2011, doi: 10.1155/2011/270974.

T. V. Miji, A. S. Harry, G. Goshitha, A. Liyana, S. Sunaina and B. Ranjini, “Green synthesis of silver nanoparticles and its antioxidant and antimicrobial activity,” Int. J. Multidiscip. Res., vol. 5, no. 1, 2023, doi: 10.36948/ijfmr.2023.v05i01.1582.

S. Iravani, “Green synthesis of metal nanoparticles using plants,” Green Chem., vol. 13, no. 10, pp. 2638–2650, 2011, doi: 10.1039/c1gc15386b.

H. Cerjak, “Book note: Introductions to nanoparticles and nanomaterials,” Powder Metallurgy, vol. 57, p. 82, 2014.

V. V. Makarov et al., “’Green’ nanotechnologies: Synthesis of metal nanoparticles using plants,” Acta Naturae, vol. 6, no. 1, pp. 35–44, 2014, doi: 10.32607/20758251-2014-6-1-35-44.

S. F. Hasany, I. Ahmad, J. Ranjan and A. Rehman, “Systematic review of the preparation techniques of iron oxide magnetic nanoparticles,” Nanosci. Nanotechnol., vol. 2, no. 6, pp. 148–158, 2012, doi: 10.5923/j.nn.20120206.01.

B. M. Tissue and H. B. Yuan, “Structure particle size and annealing gas phase-condensed Eu3+: Y2O3 nanophosphors,” J. Solid State Chem., vol. 171, pp 12–18, 2003, doi: 10.1016/S0022-4596(02)00140-8.

S. Gohil, R. Chandra, B. Chalke, S. Bose and P. Ayyub, “Sputter deposition of self-organised nanoclusters through porous anodic alumina templates,” J. Nanosci. Nanotech., vol. 7, p. 641646, 2007, doi: 10.1166/jnn.2007.121.

W. Chang, G. Skandan, H. Hahn, S. C. Danforth and B. H. Kear, “Chemical vapor condensation of nanostructured ceramic powders,” Nanostruc. Mater., vol. 4, no. 3, pp. 345–351, 1994, doi: 10.1016/0965-9773(94)90144-9.

M. Winterer, H. Hahn, and Z. Metallkd, “Chemical vapor synthesis of nanocrystalline powders,” Nanocer. Chem. Vapor Syn., vol. 94, pp. 1084–1090, 2003, doi: 10.3139/146.031084.

A. Konrad, U. Herr, R. Tidecks and F. Samwer, “Luminescence of bulk and nanocrystalline cubic yttria,” J. Appl. Phys., vol. 90, no. 7, pp. 3516–3523, 2001, doi: 10.1063/1.1388022.

A. Bokov, A. Shelyug and A. Kurlov, “Synthesis, sintering, and order–disorder transitions of non-stoichiometric nanocrystalline VCx,” Int. J. Refract. Met. Hard Mater., vol. 105, p. 105802, 2022, doi: 10.1016/j.ijrmhm.2022.105802.

A. B. Sharma, M. Sharma and R. K. Pandey, “Synthesis, properties and potential applications of semiconductor quantum particles,” Asian J. Chem., vol. 21, no. 10, pp. S033–S038, 2009.

R. N. Bhargava, D. Gallagher, X. Hong and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Phys. Rev. Lett., vol. 72, pp. 416–419, 1994, doi: 10.1103/PhysRevLett.72.416.

Z. O. Yu, D. Chang, C. Li, N. Zhang, Y. Y. Feng and Y. Y. Dai, “Blue photoluminescent properties of pure nanostructured γ-Al2O3,” Mater. Res. Soc., vol. 16, no. 7, pp. 1890–1893, 2001, doi: 10.1557/JMR.2001.0259.

C. H. Lu and J. Jagannathan, “Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett., vol. 80, no. 19, p. 36083610, 2002, doi: 10.1063/1.1475772.

M. Morita, D. Rau, S. Kajiyama, T. Sakurai, M. Baba and M. Iwamura, “Luminescence properties of nanophosphors: Metal ion-doped sol-gel silica glasses,” Mater. Sci.-Poland, vol. 22, no. 1, p. 515, 2004.

A. I. Dikusar, P. G. Globa, S. S. Belevskii and S. P. Sidel’nikova, “On limiting rate of dimensional electrodeposition at meso- and nanomaterial manufacturing by template synthesis,” Surf. Eng. Appl. Electrochem., vol. 45, no. 3, pp. 171–179, 2009, doi: 10.3103/S1068375509030016.

S. A. Silkin, S. S. Belevskii, A. S. Gradinar,, V. I. Petrenko and I. V. Yakovets, “Electrodeposition of nanocrystalline Co-W coatings from citrate electrolytes under controlled hydrodynamic conditions – Part 3: The micro- and macrodistribution of the deposition rates, the structure, and the mechanical properties,” Surf. Eng. Appl. Electrochem., vol. 46, no. 3, pp. 206–214, 2010, doi: 10.3103/S1068375510030026.

M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy and G. E. J. Poinern, “Green synthesis of metallic nanoparticles via biological entities,” Materials, vol. 8, no. 11, pp. 7278–7308, 2015, doi: 10.3390/ma8115377.

N. A. Karim, N. J. Rubinsin, M. A. A. Burukan and S. K. Kamarudin, “Sustainable route of synthesis platinum nanoparticles using orange peel extract,” Int. J. Green Ener., vol. 16, no. 15, pp. 1518–1526, 2019, doi: 10.1080/15435075.2019.1671422.

K. B. Narayanan and N. Sakthivel, “Biological synthesis of metal nanoparticles by microbes,” Adv. Coll. Interf. Sci., vol. 156, no. 1–2, pp. 1–13, 2010, doi: 10.1016/j.cis.2010.02.001.

N. K. Mukhopadhyay and T. P. Yadav, “Some aspects of stability and nanophase formation in quasicrystals during mechanical milling,” Israel J. Chem., vol. 51, no. 11–12, pp. 1185–1196, 2011, doi: 10.1002/ijch.201100145.

H. Korbekandi, S. Iravani and S. Abbasi, “Production of nanoparticles using organisms,” Crit. Rev. Biotechnol., vol. 29, no. 4, pp. 279–306, 2009, doi: 10.3109/07388550903062462.

Y. Gao et al., Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection,” Green Chem., vol. 16, no. 3, pp. 1255–1261, 2014, doi: 10.1039/C3GC41535J.

D. Zheng, C. Hu, T. Gan, X. Dang and S. Hu, “Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles,” Sens. Actuators B: Chem., vol. 148, no. 1, pp. 247–252, 2010, doi: 10.1016/j.snb.2010.04.031.

J. Wang et al., “Bacterial magnetosomes loaded with doxorubicin and transferrin improve targeted therapy of hepatocellular carcinoma,” Nanotheranostics, vol. 3, no. 3, p. 284, 2019, doi: 10.7150/ntno.34601.

B. E. B. Crețu, G. Dodi, A. Shavandi, I. Gardikiotis, I. L. Șerban and V. Balan, “Imaging constructs: The rise of iron oxide nanoparticles,” Molecules, vol. 26, no. 11, p. 3437, 2021, doi: 10.3390/molecules26113437.

A. A. Khan, A. M. Alanazi, N. Alsaif, T. A. Wani and M. A. Bhat, “Pomegranate peel induced biogenic synthesis of silver nanoparticles and their multifaceted potential against intracellular pathogen and cancer,” Saudi J. Biol. Sci., vol. 28, no. 8, pp. 4191–4200, 2021, doi: 10.1016/j.sjbs.2021.06.022.

S. C. Kumari, V. Dhand and P. N. Padma, “Green synthesis of metallic nanoparticles: A review,” in Nanomaterials. Academic Press, 2021, pp. 259–281, doi: 10.1016/B978-0-12-822401-4.00022-2.

C. N. Riese et al., “An automated oxystat fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense,” Microb. Cell Factories, vol. 19, pp. 1–15, 2020, doi: 10.1186/s12934-020-01469-z.

A. Hubler and O. Osuagwu, “Digital quantum batteries: Energy and information storage in nanovacuum tube arrays,” Complexity, vol. 15, no. 5, pp. 48–55, 2010, doi: 10.1002/cplx.20306.

A. Jóźwik et al., “The effect of different levels of Cu, Zn and Mn nanoparticles in Hen Turkey diet on the activity of aminopeptidases,” Molecules, vol. 23, no. 5, p. 1150, 2018, doi: 10.3390/molecules23051150.

M. V. Tuttolomondo, S. Municoy, M. I. A. Echazú1, L. M. López and G. S. Alvarez, “Magnetic nanoparticles for nucleic acid delivery: Magnetofection, gene therapy and vaccines,” Magnetic Nanopart. Biomed. Appl., vol. 143, pp. 278–313, 2023, doi: 10.21741/9781644902332-10.

R. Puri, V. Arora, A. Kabra, H. Dureja and S. Hamaal, “Magnetosomes: A tool for targeted drug delivery in the management of cancer,” J. Nanomater., 2022, doi: 10.1155/2022/6414585.

M. A. Zoroddu, S. Medici, A. Ledda, V. M. Nurchi, J. Lachowicz and M. Peana, “Toxicity of nanoparticles,” Curr. Med. Chem., vol. 21, no. 33, pp. 3837–3853, 2014, doi: 10.2174/0929867321666140601162314.

A. Mnyusiwalla, A. S. Daar and P. A. Singer, “Mind the gap: Science and ethics in nanotechnology,” Nanotechnol., vol. 14, no. 3, 2003, doi: 10.1088/0957-4484/14/3/201.

J. Wu et al., “Metal-containing nanoparticles in low-rank coal-derived fly ash from China: characterization and implications toward human lung toxicity,” Environ. Sci. Technol., vol. 55, no. 10, pp. 6644–6654, 2021, doi: 10.1021/acs.est.1c00434.

J. Ying, Nanostructured Materials. New York: Academic Press, 2001.

C. Greulich, J. Diendorf, T. Simon, G. Eggeler, M. Epple and M. Köller, “Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells,” Acta Biomater., vol. 7, no. 1, pp. 347–354, 2011, doi: 10.1016/j.actbio.2010.08.003.

C. Hanley et al., “The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction,” Nanoscale Res. Lett., vol. 4, no. 12, pp. 1409–1420, 2009, doi: 10.1007/s11671-009-9413-8.

T. Vines and T. Faunce, “Assessing the safety and cost-effectiveness of early nanodrugs,” J. Law Med., vol. 16, no. 5, pp. 822–845, 2009.

H.A. E. Benson, V. Sarveiya, S. Risk and M. S. Roberts, “Influence of anatomical site and topical formulation on skin penetration of sunscreens,” Ther. Clin. Risk Manag., vol. 1, no. 3, pp. 209–218, 2005, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1661631/.

V. Howard, “Statement of Evidence: Particulate Emissions and Health: Proposed Ringaskiddy waste-to-energy facility,” An Bord Pleanála, 2009, http://www.durhamenvironmentwatch.org/Incinerator%20Health/CVHRingaskiddyEvidenceFinal1.pdf.

N. Pieters, “Blood pressure and same-day exposure to air pollution at school: Associations with nano-sized to coarse PM in children,” Environ. Health Persp., vol. 123, no. 7, pp. 737–742, 2015, doi: 10.1289/ehp.1408121.

M. Maaza et al., “Peculiar size effects in nanoscaled systems,” Nano-Horizons, vol. 1, 2022, doi: 10.25159/NanoHorizons.9d53e2220e31.

P. Forouzandeh, V. Kumaravel and S. C. Pillai, “Electrode materials for supercapacitors: A review of recent advances,” Catalysts, vol. 10, no. 9, p. 969, 2020, doi: 10.3390/catal10090969.

Downloads

Published

2023-07-06

How to Cite

[1]
M. U. Khan, “Metal Nanoparticles: Synthesis Approach, Types and Applications – A Mini Review”, NH, vol. 2, p. 21 pages, 2023.

Issue

Section

Review Article