Investigating the Dielectric Photosensitivity of Zinc Oxide Nanostructures Under Ultraviolet Light




ZnO, dielectric properties, photosensitivity, thin film


In this study, we prepared a ZnO thin film using the sol-gel spin-coating method on glass substrates. We repeated the synthesis procedure once, twice and four times to obtain the samples. We then investigated the FESEM images, XRD diffractograms, Hall effect and dielectric measurement of the samples. We observed the phase transition from the wurtzite to the zinc blende phase as a result of the number of repetitions. The films exhibited direct band gaps ranging from 3.2 eV to 3.3 eV. This result indicate that the two-times synthesis process has considerably affected the morphology and also improved the crystallinity of the layer. The sample of which the surface was covered with nearly uniform short nanorod grains with an average diameter of ~ 180 nm showed the highest sensitivity to ultraviolet light.


Metrics Loading ...


E. Monroy, F. Omnès and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, no. 4, p. R33, 2003, doi: 10.1088/0268-1242/18/4/201. DOI:

P. Capper, S. O. Kasap and A. Willoughby, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications. John Wiley & Sons, 2011.

P. Hazra and S. Jit, “A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation,” J. Semicond., vol. 35, no. 1, p. 014001, 2014, doi: 10.1088/1674-4926/35/1/014001. DOI:

N. Al-Hardan, A. Jalar, M. A. Hamid, L. K. Keng, N. Ahmed and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sensor Actuat. A–Phys., vol. 207, pp. 61–66, 2014, doi: 10.1016/j.sna.2013.12.024. DOI:

A. Djurišić, A. M. C. Ng and X. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron., vol. 34, no. 4, pp. 191–259, 2010, doi: 10.1016/j.pquantelec.2010.04.001. DOI:

D. Kaur, A. Bharti, T. Sharma and C. Madhu, “Dielectric properties of ZnO-based nanocomposites and their potential applications,” Int. J. Opt., vol. 2021, pp. 1–20, 2021, doi: 10.1155/2021/9950202. DOI:

C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. Elsevier, 2011.

J.-J. Dong et al., “Controllable synthesis of ZnO nanostructures on the Si substrate by a hydrothermal route,” Nanoscale Res. Lett., vol. 8, pp. 1–7, 2013, doi: 10.1186/1556-276X-8-378. DOI:

D. Polsongkram et al., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Phys. Rev. B. Condens., vol. 403, no. 19–20, pp. 3713–3717, 2008, doi: 10.1016/j.physb.2008.06.020. DOI:

C. Pacholski, A. Kornowski and H. Weller, “Self‐assembly of ZnO: From nanodots to nanorods,” Angew. Chem. Int. Ed., vol. 41, no. 7, pp. 1188–1191, 2002,;2-5. DOI:<1188::AID-ANIE1188>3.0.CO;2-5

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” small, vol. 2, no. 8–9, pp. 944–961, 2006, doi: 10.1002/smll.200600134. DOI:

T. D. Steiner, Semiconductor Nanostructures for Optoelectronic Applications. Artech House, 2004, doi: 10.1108/sr.2004.24.3.320.3. DOI:

T. F. Chung, J. A. Zapien and S.-T. Lee, “Luminescent properties of ZnO nanorod arrays grown on Al: ZnO buffer layer,” J. Phys. Chem. C, vol. 112, no. 3, pp. 820–824, 2008, doi: 10.1021/jp076618d. DOI:

D. Mendil et al., “Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering,” J. Lumin., vol. 215, p. 116631, 2019, doi: 10.1016/j.jlumin.2019.116631. DOI:

T. Minami, T. Miyata, K. Ihara, Y. Minamino and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices,” Thin Solid Films, vol. 494, no. 1–2, pp. 47–52, 2006, doi: 10.1016/j.tsf.2005.07.167. DOI:

A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye and A. Waag, “High-quality ZnO layers grown by MBE on sapphire,” Superlattices Microstruct., vol. 38, no. 4–6, pp. 265–271, 2005, doi: 10.1016/j.spmi.2005.08.025. DOI:

N. S. Ridhuan, K. Abdul Razak, Z. Lockman and A. Abdul Aziz, “Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing,” PloS One, vol. 7, no. 11, p. e50405, 2012, doi: 10.1371/journal.pone.0050405. DOI:

K. L. Foo, U. Hashim, K. Muhammad and C. H. Voon, “Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application,” Nanoscale Res. Lett., vol. 9, pp. 1–10, 2014, doi: 10.1186/1556-276X-9-429. DOI:

L. E. Greene et al., “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett., vol. 5, no. 7, pp. 1231–1236, 2005, doi: 10.1021/nl050788p. DOI:

S. Aksoy, Y. Caglar, S. Ilican and M. Caglar, “Sol–gel derived Li–Mg co-doped ZnO films: Preparation and characterization via XRD, XPS, FESEM,” J. Alloys Compd., vol. 512, no. 1, pp. 171–178, 2012. doi: 10.1016/j.jallcom.2011.09.058. DOI:

M. Majeed Khan, R. Siwach, S. Kumar, M. Ahmed and J. Ahmed, “Investigations on microstructure, optical, magnetic, photocatalytic, and dielectric behaviours of pure and Co-doped ZnO NPs,” J. Mater. Sci. Mater. Electron., vol. 31, pp. 6360–6371, 2020, doi: 10.1007/s10854-020-03192-2. DOI:

M. Bitaraf, M. Ghazi and M. Izadifard, “CoFe2O4-BaTiO3 nanocomposites; role of ferrite phase on the structural, optical and magnetic properties,” Ferroelectr., vol. 613, no. 1, pp. 231–249, 2023, doi: 10.1080/00150193.2023.2215516. DOI:




How to Cite

E. Salahi, H. Enayati Taloobaghi, M. M. Shahidi, and F. I. Ezema, “Investigating the Dielectric Photosensitivity of Zinc Oxide Nanostructures Under Ultraviolet Light”, NH, vol. 3, p. 12 pages, 2024.



Received 2023-08-01
Accepted 2024-01-09
Published 2024-04-04