Selective Gamma-Ray Ionisation of Vanadium Oxides: Towards the Formation of VO2




vanadium oxides, gamma-ray irradiation, structural properties, CubeSats, thermal shielding


In this study, we report on the valence control of vanadium oxidation states towards stabilising VO2 thin films. X-ray diffraction measurements indicate that up to 300 kGy of gamma-ray radiation the VO2 phase remains monoclinic, with the crystallite size only varying slightly with the dose. X-ray photoemission spectroscopy indicates the presence of three oxide phases (VO2, V2O3 and V2O5) on the samples. A decrease in the oxidation states of V3+ and V5+ and an increase in the valence state V4+ are observed for irradiations up to 300 kGy, which favours the vanadium dioxide VO2 formation.


Metrics Loading ...


V. N. Andreev, and V. A. Klimov, “Electrical conductivity of the semiconducting phase in vanadium dioxide single crystals,” Phys. Solid State, vol. 49, no. 12, pp. 2251–2255, 2007, doi: 10.1134/S1063783407120062. DOI:

T.-H. Yang, R. Aggarwal, A. Gupta, H. Zhou, and R. J. Narayan, “Semi-conductor metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates,” J. Appl. Phys., vol. 107, no. 5, pp. 053514–053514, 2010, doi: 10.1063/1.3327241.

Y. Muraoka, and Z. Hiroi, “Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates,” J. Appl. Phys. Lett., vol. 80, no. 4, pp. 583–585, 2002, doi: 10.1063/1.1446215. DOI:

J. I. Sohn et al., “Stress-induced domain dynamics and phase transitions in epitaxially grown VO2 nanowires,” J. Nanotechnol., vol. 23, no. 20, pp. 205–707, 2012, doi: 10.1088/0957-4484/23/20/205707. DOI:

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys., vol. 96, no. 2, pp. 1209–1213, 2004, doi: 10.1063/1.1762995.

J. Cao et al., “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” J. Nat. Nanotechnol., vol. 4, no. 11, pp. 732–737, 2009, doi: 10.1038/nnano.2009.266. DOI:

J. Liu, Q. Li, T. Wang, D. Yu, and Y. Li, “Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties,” J. Angew. Chem., vol. 116, no. 38, pp. 5158–5162, 2004, doi: 10.1002/ange.200460104. DOI:

T.-H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R. J. Narayan, and J. Narayan, “Semiconductor metal, transition characteristics of VO2 thin films grown on c- and r-sapphire substrates,” J. Appl. Phys., vol. 107, no. 5, p. 053514, 2010, doi: 10.1063/1.3327241. DOI:

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and D. Nikanpour, “Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition,” J. Vac. Sci. Technol. Vac. Surf. Films, vol. 22, no. 3, pp. 859–864, 2004, doi: 10.1116/1.1722506. DOI:

A. Cavalleri, T. Dekorsy, H. W. Chong, J. C. Kieffer, and R. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” J. Phys. Rev. B, vol. 70, no. 16, pp. 102–161, 2004, doi: 10.1103/PhysRevB.70.161102. DOI:

Y. Ji et al., “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” J. Sci. Rep., vol. 25, pp. 48–54, 2014, doi: 10.1038/srep04854. DOI:

B. D. Ngom et al., “Competitive growth texture of pulsed laser deposited vanadium dioxide nanostructures on a glass substrate,” J. Acta Mater., vol. 64, no. 15, pp. 32–41, 2014, doi: 10.1016/j.actamat.2013.11.048. DOI:

A. Hendaoui, N. Émond, M. Chaker, and E. Haddad, “Highly tunable-emittance-radiator based semiconductor-metal transition of VO2 thin films,” J. Appl. Phys. Lett., vol. 102, p. 061107, 2013, doi: 10.1063/1.4792277. DOI:

E. Haddad, R. V. Kruzelecky, B. Wong, W. Jamroz, and P. Poinas, Large tuneability IR emittance thermal control coating for space applications, 43rd Int. Conf Environ. Syst., AIAA, pp. 34–36, 2013, doi: 10.2514/6.2013-3436. DOI:

B. L. Doyle, Displacement Damage Caused by Gamma-rays and Neutrons on Au and Se, SANDIA Report, 2014, doi: 10.2172/1177090. DOI:

J. Kwon, and A. T. Motta, “Gamma displacement cross sections in various materials,” J. Ann. Nuc. Energy, vol. 27, pp. 1627–1642, 2000, doi: 10.1016/S0306-4549(00)00024-4. DOI:

G. H. Kinchin, and R. S. Pease, “The displacement of atoms in solids by radiation,” J. Rep. Prog. Phys., vol. 18, no. 1, pp. 1–51, 1955, doi: 10.1088/0034-4885/18/1/301. DOI:

D. A. Thompson, “High density cascade effects,” Radiat. Eff., vol. 56, no. 3–4, pp. 105–150, 1981, doi: 10.1080/00337578108229885. DOI:

A. G. Holmes-Siedle, and L. Adams, Handbook of Radiation Effects, Oxford: Oxford University Press, 1993.

F. C. Case, “Modifications in the phase transition properties of redeposited VO2 films,” J. Vac. Sci. Technol. A, vol. 2, no. 4, pp. 1509–1512, 1984, doi: 10.1116/1.572462. DOI:

F. C. Case, “Effects of low-energy low flux ion bombardment on the properties of VO2 thin film,” J. Vac. Sci. Technol. A, vol. 7, no. 3, pp. 1194–1198, 1989, doi: 10.1116/1.576252. DOI:

A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl, J. Sci. vol. 37, no. 6, pp. 1739–1743, 1990, doi: 10.1109/23.101185. DOI:

T. C. Lu, L. B. Lin, Q. Liu, Y. Lu, and X. D. Feng, “Reduction effects in rutile induced by neutron irradiation,” Nucl. Inst. Methods J. Phys. Res. Sect. B, vol. 191, no. 1–4, pp. 291–295, 2002. DOI:

H. Karl, J. Peng, and B. Stritzker, “Effects of He-irradiation on the metal-to-insulator transition of vanadium dioxide nanoclusters,” J. Mater. Res., vol. 1256, pp. 12–56, 2010, doi: 10.1557/PROC-1256-N11-62. DOI:

M. A. Nastasi, J. W. Mayer, and J. K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications, Cambridge: Cambridge University Press, 1996, doi: 10.1017/CBO9780511565007. DOI:

R. A. Dugdale, and A. Green, “Some ordering effects in CusAu at about 100°,” J. Philos. Mag., vol. 45, no. 361, pp. 1–63, 1954, doi: 10.1080/14786440208520435. DOI:

Z. Li, Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC, IOP of science, Pixel 2008 int. workshop, Fermilab, Botavia, IL, USA, 2008.

J. W. Cleland, J. H. Crawford, K. Lark Horovitz, J. C. Pigg, and F. W. Young, “The effect of fast neutron bombardment on the electrical properties of Germanium,” J. Phys. Rev., vol. 8, no. 2, pp. 312–319, 1951, doi: 10.1103/PhysRev.83.312. DOI:

R. Stoenescu, “Effects of neutron irradiation on the microstructure and mechanical properties of the heat affected zone of stainless-steel welds,” PhD thesis, EPFL, Lausanne, Switzerland, 2005.

V. Eyert, “The metal-insulator transitions in VO2: A band theoretical approach,” J. Ann. Phys., vol. 514, no. 9, pp. 650–702, 2002, doi: 10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-K. DOI:

M. Chandrasekar et al., “Specific charge separation of Sn- doped MgO nanoparticles for photocatalytic activity under UV light irradiation,” J. Sep. Pur. Tech., vol, 294, p. 121189, 2022, doi: 10.1016/j.seppur.2022.121189. DOI:

G. Garry, O. Durand, and A. Lordereau, ‘Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes,” Thin Solid Films, pp. 453–427, 2004, doi: 10.1016/j.tsf.2003.11.118. DOI:

V. Perumal et al., “Enhancement of surface photocatalytic performance—Hierarchical SnO nanorods treated against methylene blue dye under solar irradiation and biological degradation,” J. Env. Res., vol. 209, p. 112821, 2022, doi: 10.1016/j.envres.2022.112821. DOI:

V. Perumal et al., “SnO decorated hierarchical graphene oxide nanotiges with high photocatalytic performance for energy conversion applications,” J. Fuel., vol. 324, p. 124599, 2022, doi: 10.1016/j.fuel.2022.124599. DOI:

S. Panimalar et al., “Reproducibility and long-term stability of Sn-doped MnO nanostructures: practical photocatalytic systems and wastewater treatment applications,” J. Chem., vol. 293, p. 133646, 2022, doi: 10.1016/j.chemosphere.2022.133646. DOI:

T.-W. Chiu, K. Tonooka, and N. Kikuchi, “Influence of oxygen pressure on the structural, electrical and optical properties of VO2 thin films deposited on ZnO/glass substrates by pulsed laser deposition,” J. Thin Solid Films, vol. 518, no. 24, pp. 7441–7444, 2010, doi: 10.1016/j.tsf.2010.05.019. DOI:

E. Hryha, E. Rutqvist, and L. Nyborg, “Stoichiometric vanadium oxides studied by XPS,” J. Surf. Interface. Anal., vol. 44, pp. 10–22, 2012, doi: 10.1002/sia.3844. DOI:

A. G. Holmes-Siedle, and L. Adams, Handbook of Radiation Effects, Oxford: Oxford University Press, 1993.

C. L. Tracy, J. McLain Pray, M. Lang, D. Popov, C. Park, and C. Trautmann, “Defect accumulation in THO2 irradiated with swift heavy ions,” J. Nucl, Instrum. Meth., vol. 326, pp. 169–173, 2014, doi: 10.1016/j.nimb.2013.08.070. DOI:

T. Wiss, H. Matzke, C. Trautmann, M. Toulemonde, and S. Klaumunzer, “Radiation damage in UO2 by swift heavy ions,” J. Nucl. Instrum. Meth., vol. 122, no. 3, pp. 583–588, 1997, doi: 10.1016/S0168-583X(96)00754-9. DOI:

A. Benyagoub, “Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions,” J. Phys. Rev., vol. 72. P. 094114, 2005, doi: 10.1103/PhysRevB.72.094114. DOI:

M. Lang et al., “Swift heavy ion-induced phase transformation in Gd2O3,” Nucl. Instrum. Meth., vol. 326, pp. 121–125, 2014, doi: 10.1016/j.nimb.2013.10.073. DOI:

W. Weber, “Models and mechanisms of irradiation-induced amorphization in ceramics,” Nucl. Instrum. Meth., vol. 167, pp. 98–106, 2000, doi: 10.1016/S0168-583X(99)00643-6. DOI:

V. Saikiran, N. Srinivasa Rao, G. Devaraju, G. S. Chang, and P. Pathak, “Ion beam irradiation effects on Ge nanocrystals synthesized by using RF sputtering followed by RTA,” Nucl. Instrum. Meth., vol. 312, pp. 161–164, 2013, doi: 10.1016/j.nimb.2013.04.008. DOI:

S. Takaki, K. Yasuda, T. Yamamoto, S. Matsumura, and N. Ishikawa, “Atomic structure of ion tracks in Ceria,” Nucl. Instrum. Meth., vol. 326, pp. 140–144, 2014, doi: 10.1016/j.nimb.2013.10.077. DOI:

A. Gupta, R. Singhal, J. Narayan, and D. K. Avasthi, “Electronic excitation induced controlled modification of semiconductor-to-metal transition in epitaxial VO2 thin films,” J. Mater. Res., vol. 26, pp. 2901–2906, 2011, doi: 10.1557/jmr.2011.392. DOI:

I. G. Madiba, N. Émonde, M. Chaker, and F. T. Thema, “Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films,” J. Appl Surf Science., vol. 411, pp. 271–278, 2017, doi: 10.1016/j.apsusc.2017.03.131. DOI:

J. Suh, R. Lopez, L. C. Feldman, and R. F. Haglung, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin film,” J. Appl. Phys., vol. 96, p. 1209, 2004, doi: 10.1063/1.1762995. DOI:

J. B. Kana et al., “Thermochromic VO2 thin films synthesized by inverted cylindrical magnetron sputtering,” J. Appl. Surf. Sci., vol. 234, no. 13, pp. 3959–3963, 2008, doi: 10.1016/j.apsusc.2007.12.021. DOI:

L. Hongwei et al., “Size effects on metal-insulator phase transition in individual vanadium dioxide nanowires,” J. Opt. Express, vol. 22, pp. 30748–30755, 2014, doi: 10.1364/OE.22.030748. DOI:

M. Subash et al., “Pseudo-kinetic model of copper doping on the structural, magnetic and photocatalytic activity of magnesium oxide nanoparticles for energy application,” J. Bio. Conv. Bior., vol. 13, pp. 3427–3437, 2023, doi: 10.1007/s13399-022-02993-1. DOI:




How to Cite

M. Ndiaye, O. Sakh, A. Seck, B. D. Ngom, M. Maaza, and M. Chaker, “Selective Gamma-Ray Ionisation of Vanadium Oxides: Towards the Formation of VO2”, NH, vol. 2, p. 20 pages, 2023.