Influence of Adansonia digitata Stem Extract Immersion Time on Properties of Biosynthesised Silver Nanoparticles

Authors

DOI:

https://doi.org/10.25159/3005-2602/15935

Keywords:

Adansonia digitata root, baobab plant root, green synthesis, immersion time, reducing agent, silver nanoparticles

Abstract

The emergence of the multidisciplinary field of nanoscience with potential applications in medicine, cosmetics, renewable energy, agriculture and environmental remediation has led scientists to search for safer methods of synthesising nanoparticles. We based this study on the synthesis of silver nanoparticles (AgNPs) for varying immersion times of 30, 60, 90, 120 and 150 min, while employing Adansonia digitata as a reducing and capping agent and labelled A, B, C, D and E, respectively. The X-ray diffraction (XRD) pattern of the synthesised AgNPs for all samples have three peaks positioned at 2θ = 37.94°, 44.07° and 64.37° corresponding to (111), (200) and (220) planes, respectively. The samples have a preferred orientation at 2θ = 37.94° corresponding to (111) plane irrespective of the duration of immersion of Adansonia digitata root extracts. The preferred intense peak shows a polycrystalline phase composition of the green synthesised AgNPs, demonstrating the creation of face-centred cubic crystalline of AgNPs. The intrinsic stress, σs, dislocation density, δ, specific surface area, S, crystallite size (D), surface area (S) to volume (V) ratio, lattice parameter, a and atomic packing factor were calculated from XRD data and presented. The particle sizes obtained from the SEM analysis are 69.88, 18.69, 15.45, 19.64 and 20.08 nm for samples A, B, C, D and E, respectively. The optical energy band gaps are 2.37 eV, 2.42 eV, 2.59 eV, 2.52 eV and 2.34 eV for samples A, B, C, D and E respectively. The synthesised AgNPs can be used in energy storage and conversions owing to their properties.

Metrics

Metrics Loading ...

Author Biographies

Sabastine Ezike, Modibbo Adama University of Technology

Department of Physics

Emmanuel Ike, Modibbo Adama University of Technology

Department of Physics

References

Md. H. Ali, Md. A. K. Azad, K. A. Khan, Md. O. Rahman, U. Chakma and A. Kumer, “Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques,” ACS Omega, vol. 8, no. 31, pp. 28133−28142, July 2023, doi: 10.1021/acsomega.3c01261.

A. Bazrgaran, S. Mahmoodabadi, A. Ghasempour, E. Shafaie, A. Sahebkar and S. Eghbali, “Facile bio-genic synthesis of Astragalus sarcocolla (Anzaroot) gum extract mediated silver nanoparticles: Characterizations, antimicrobial and antioxidant activities,” Plant Nano Biol., vol. 6, p. 100052, November 2023, doi: 10.1016/j.plana.2023.100052.

G. M. Nair, T. Sajini and B. Mathew, “Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications,” Talanta Open, vol. 5, p. 100080, August 2022, doi: 10.1016/j.talo.2021.100080.

M. Ibrahim, “Current perspectives of nanoparticles in medical and dental biomaterials” J. Biomed. Res., vol. 26, no. 3, pp. 143−151, April 2012, doi: 10.7555/JBR.26.20120027.

N. M Basfer and N. Al-Harbi, “Structural, optical and photocatalytic activity of Ce3+ doped Co–Mg nanoparticles for wastewater treatment applications,” J. King Saud Univ.Sci., vol. 35, no. 1, p. 102436, January 2023, doi: 10.1016/j.jksus.2022.102436.

S. Panimalar et al., “Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications,” Env. Res., vol. 205, p. 112560, April 2022. doi: 10.1016/j.envres.2021.112560.

L. G. Bousiakou, P. J. Dobson, T. Jurkin, I. Marić, O. Aldossary and M. Ivanda, “Optical, structural and semiconducting properties of Mn doped TiO2 nanoparticles for cosmetic applications,” J. King Saud Univ. Sci., vol. 34, no. 3, p. 101818, April 2022, doi: 10.1016/j.jksus.2021.101818.

S. R. Al-Mhyawi, “Green synthesis of silver nanoparticles and their inhibitory efficacy on corrosion of carbon steel in hydrochloric acid solution,” Int. J. Electrochem. Sci., vol. 18, no. 9, p. 100210, September 2023, doi: 10.1016/j.ijoes.2023.100210.

J. Y. Song and B. S. Kim, “Rapid biological synthesis of silver nanoparticles using plant leaf extracts,” Bioprocess Biosyst. Eng., vol. 32, pp. 79–84, April 2009, doi: 10.1007/s00449-008-0224-6.

F. Okafor, A. Janen, T. Kukhtareva, V. Edwards and M. Curley, “Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity,” Int. J. Environ. Res. Public Health, vol. 10, no. 10, pp. 5221–5238, October 2003, doi: 10.3390/ijerph10105221.

N. Rani, P. Singh, S. Kumar, P. Kumar, V. Bhankar and K. Kumar, “Plant-mediated synthesis of nanoparticles and their applications: A review,” Mater. Res. Bull., vol. 163, p. 112233, July 2023, doi: 10.1016/j.materresbull.2023.112233.

S. Ying, Z. Guan, P. C. Ofoegbu, P. Clubb, C. Rico, F. He and J. Hong, “Green synthesis of nanoparticles: Current developments and limitations,” Environ. Technol. Innov., vol. 26, p. 102336, May 2022, doi: 10.1016/j.eti.2022.102336.

D. Garg et al., “Synthesis of silver nanoparticles utilizing various biological systems: Mechanisms and applications – A review,” Prog. Biomater, vol. 9, pp. 81−95, July 2020, doi: 10.1007/s40204-020-00135-2.

I. Uluisik, H. C. Karakaya and A. Koc, “The importance of boron in biological systems,” J. Trace Elem. Med. Biol., vol. 45, pp. 156−162, January 2018, doi: 10.1016/j.jtemb.2017.10.008.

K. B. Narayanan and N. Sakthivel, “Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents,” Adv. Colloid Interface Sci., vol. 169, no. 2, pp. 59−79, December 2011, doi: 10.1016/j.cis.2011.08.004.

I. Li, H. Zeng, Z. Zeng, Y. Zeng and T. Xie, “Promising grapheme-based nanomaterials and their biomedical applications and potential risks: A comprehensive review,” ACS Biomater. Sci. Eng., vol. 7, no. 12, pp. 5363−5396, November 2021, doi: 10.1021/acsbiomaterials.1c00875.

I. Khan, K. Saeed and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arabian J. Chem., vol. 12, no. 7, pp. 908−931, November 2019, doi: 10.1016/j.arabjc.2017.05.011.

H. Jan et al., “A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications,” J. Saudi Chem. Soc., vol. 25, no. 8, p. 101297, August 2021, doi: 10.1016/j.jscs.2021.101297.

R. Javed, M. Zia, S. Naz, O. Aisida, N. ul Ain and O. Ao, “Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects,” J. Nanobiotechnology, vol. 18, p. 172, November 2020, doi: 10.1186/s12951-020-00704-4.

L. Cieśla, I. Kowalska, W. Oleszek and A. Stochmal, “Free radical scavenging activities of polyphenolic compounds isolated from Medicago sativa and Medicago truncatula assessed by means of thin-layer chromatography DPPH rapid test,” Phytochem. Anal., vol. 24, no. 1, pp. 47–52, January 2013, doi: 10.1002/pca.2379.

O. V. Kharissova, H. V. Dias, B. I. Kharisov, B. O. Perez and V. M. Perez, “The greener synthesis of nanoparticles,” Trends Biotechnol., vol. 31, no. 4, pp. 240–248, April 2013, doi: 10.1016/j.tibtech.2013.01.003.

M. Tomita and M. Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature, vol. 421, pp. 517−520, January 2003, doi: 10.1038/nature01350.

U. K. Sur, “Biosynthesis of metal nanoparticles and graphene,” in Advanced Surface Engineering Materials, A. Tiwari, R. Wang and B. Wei, Eds, John Wiley & Sons, 2016, ch. 6, pp. 241−295, doi: 10.1002/9781119314196.ch6.

X. Han and L. L. Parker, “Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts,” Biochim. Open, vol. 4, pp. 107−111, June 2017, doi: 10.1016/j.biopen.2017.03.004.

S. Pouyan, K. Kafshdouzan and A. Jebelli, “Synergistic effect of Cinnamomum camphora and Origanum vulgare essential oils against bla CTX-M producing Escherichia coli isolated from poultry colibacillosis,” J. Med. Bacteriol., vol. 10, no. 1–2, pp. 20−29, 2021, https://jmb.tums.ac.ir/index.php/jmb/article/view/444.

J. F. Islas, E. Acosta, G. Zuca, J. L. Delgado-Gallegos, M. G. Moreno-Treviño, B. Escalante and J. E. Moreno-Cuevas, “An overview of neem (Azadirachta indica) and its potential impact on health,” J. Funct. Foods, vol. 74, p. 04171, November 2020, doi: 10.1016/j.jff.2020.104171.

A. N. Ossai, S. C. Ezike and A. B. Dikko, “Bio-synthesis of zinc oxide nanoparticles from bitter leaf (Vernonia amygdalina) extract for dye-sensitized solar cell fabrication,” J. Mater. Environ. Sci., vol. 1, pp. 444–451, 2020.

A. Surjushe, R. Vasani and D. G. Saple, “Aloe vera: A short review,” Indian J. Dermatol. vol. 53, no. 4, pp. 163−166, October 2008, doi: 10.4103/0019-5154.44785.

A. H. A. Al-Jobouri, “Studying some the functional properties of tamarind tamarindus indica L. Mucilage,” Al-Qadisiyah J. Agric. Sci., vol. 10, no. 2, pp. 304−307, December 2020, doi: 10.33794/qjas.2020.167474.

S. Phochantachinda, D. Chatchaisak, P. Temviriyanukul, A. Chansawang, P. Pitchakarn and B. Chantong, “Ethanolic fruit extract of Emblica officinalis suppresses neuroinflammation in microglia and promotes neurite outgrowth in neuro2a cells,” Evidence-Based Complementary Altern. Med. pp. 1−16, September 2021, doi: 10.1155/2021/6405987.

A. D. Ahmed, B. D. V. Mathew, S. C. Ezike and P. Timtere, “Effects of treatment duration on mechanical, chemical, structural and thermal properties of baobab-pod fibres,” J. Nat. Fibres, vol. 19, no. 16, pp. 15116–15127, May 2022, doi: 10.1080/15440478.2022.2070326.

D. E. Isaac, M. I. Monday and B. A. Abel, “Evaluation of Adansonia digitata (baobab) leaf and root extracts as inhibitor on dual phase steel (DPS) in 0.3M H2SO4,” American Journal of Computing and Engineering, vol. 5, no. 2, pp. 15–23, 2022, doi: 10.47672/ajce.1261.

U. I. Ndeze, J. Aidan, S. C. Ezike and J. F. Wansah, “Comparative performances of nature-based dyes extracted from baobab and shea leaves photo-sensitizers for dye-sensitized solar cells (DSSCs),” Curr. Res. Green Sustain. Chem., vol. 4, p. 100105, 2021, doi: 10.1016/j.crgsc.2021.100105.

M. Ali and B. H. Abbasi, “Light-induced fluctuations in biomass accumulation, secondary metabolites production and antioxidant activity in cell suspension cultures of Artemisia absinthium L.,” J. Photochem. Photobiol. B, vol. 140, pp. 223–227, November 2014, doi: 10.1016/j.jphotobiol.2014.08.008.

H. P. Wante, J. Aidan and S. C. Ezike, “Efficient dye-sensitized solar cells (DSSCs) through atmospheric pressure plasma treatment of photoanode surface”, Curr. Res. Green Sust. Chem., vol. 4, p. 100218, 2021, doi: 10.1016/j.crgsc.2021.100218.

B. Alkali, J. B. Yerima, A. D. Ahmed and S. C. Ezike, “Suppressed charge recombination aided co-sensitization in dye-sensitized solar cells-based natural plant extracts”. Optik, vol. 270, p. 170072, November 2022, doi: 10.1016/j.ijleo.2022.170072.

S. C. Ezike, A. B. Alabi, A. N. Ossai and A. O. Aina, “Stability-improved perovskite solar cells through 4-tertbutylpyridine surface-passivated perovskite layer fabricated in ambient air”, Opt. Mater., vol. 112, p. 110753, February 2021, doi: 10.1016/j.optmat.2020.110753.

A. D. Ahmed, S. C. Ezike, E. Ike, K. H. Idu, R. M. Obodo and M. A. Salawu, “Spray pyrolyzed surface-modified ZnO thin films via cobalt doping: Optical, structural and morphological properties,” Opt. Mater., vol. 149, p. 115053, March 2024, doi: 10.1016/j.optmat.2024.115053.

A. N. Ossai, A. B. Alabi, S. C. Ezike and A. O. Aina, “Zinc oxide-based dye-sensitized solar cells using natural and synthetic sensitizers,” Curr. Res. Green Sust. Chem., vol. 3, p. 100043, June 2020, doi: 10.1016/j.crgsc.2020.100043.

A. Ali, Y. W. Chiang and R. M. Santos, “X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions,” Minerals, vol. 12, no. 2, p. 205, February 2022, doi: 10.3390/min12020205.

M. A. Adekoya, S. Liu, S. S. Oluyamo, O. T. Oyeleye and R. T. Ogundare, “Influence of size classifications on the crystallinity index of Albizia gummifera cellulose,” Heliyon, vol. 8, no. 12, p. e12019, December 2022, doi: 10.1016/j.heliyon.2022.e12019.

M. A. Shenashen, S. A. El-Safty and E. A. Elshehy, “Synthesis, morphological control, and properties of silver nanoparticles in potential applications,” Part. Syst. Charact.,” vol. 31, no. 3, pp. 293–316, March 2014, doi: 10.1002/ppsc.201300181.

S. Periasamy et al., “Comparative analysis of synthesis and characterization of silver nanoparticles extracted using leaf, flower, and bark of Hibiscus rosasinensis and examine its antimicrobicidal activity,” J. Nanomater., vol. 2022, May 2022, doi: 10.1155/2022/8123854.

V. O. Njoku, K. Y. Foo and B. H. Hameed, “Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid,” Chem. Eng. J., vol. 215–216, pp. 383–388, January 2013, doi: 10.1016/j.cej.2012.10.068.

K. Renugadevi and V. Aswini, “Microwave irradiation assisted synthesis of silver nanoparticle using leaf extract of Baliospermum montanum and evaluation of its antimicrobial, anticancer potential activity,” Asian J. Pharm. Clin. Res., vol. 5, pp. 283–287, November 2012.

H. Lin, C. Huang, W. Li, C. Ni, S. Shah and Y. Tseng, “Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol,” Appl. Catal. B, vol. 68, no. 1–2, pp. 1−11, October 2006, doi: 10.1016/j.apcatb.2006.07.018.

S. C. Ezike and D. N. Okoli, “Deposition temperature effects on cualse2 compound thin films prepared by chemical bath deposition technique,” IOSR J. Appl. Phys., vol. 1, no. 3, pp. 23–26, July 2012, doi: 10.9790/4861-0132326.

K. A. Uyanga, S. C. Ezike, A. T. Onyedika, A. B. Kareem and T. M. Chiroma, “Effect of acetic acid concentration on optical properties of lead acetate based methylammonium lead iodide perovskite thin film,” Opt. Mater., vol. 109, p. 110456, November 2020, doi: 10.1016/j.optmat.2020.110456.

S. C. Ezike, A. B. Alabi, A. N. Ossai and A. O. Aina, “Effect of tertiary butylpyridine in stability of methylammonium lead iodide perovskite thin films,” Bull. Mater. Sci., vol. 43, p. 40, January 2020, doi: 10.1007/s12034-019-2002-2.

J. O. Ogunkanmi, D. M. Kulla, N. O. Omisanya, M. Sumaila, D. O. Obada and D. Dodoo-Arhin. “Extraction of bio-oil during pyrolysis of locally sourced palm kernel shells: Effect of process parameters,” Case Studies in Thermal Engineering, vol. 12, pp. 711–716, September 2018, doi: 10.1016/j.csite.2018.09.003.

Downloads

Published

2024-07-18

How to Cite

[1]
S. Ezike, M. S. Adamu, E. Ike, M. A. Salawu, P. Timtere, and R. M. Obodo, “Influence of Adansonia digitata Stem Extract Immersion Time on Properties of Biosynthesised Silver Nanoparticles”, NH, vol. 3, p. 12 pages, 2024.

Issue

Section

Articles
Received 2024-02-01
Accepted 2024-05-07
Published 2024-07-18