Enhancing the Efficiency of Organic Solar Cell By Incorporating Copper Nanoparticles in PEDOT:PSS
DOI:
https://doi.org/10.25159/3005-2602/16176Keywords:
light scattering, PEDOT:PSS, P3HT:PCBM, CuNPs, solar cellAbstract
The performance of bulk heterojunction organic solar cell can be enhanced by incorporating plasmonic copper nanoparticles. In this study, a device with the architecture ITO/PEDOT:PSS:CuNPs/P3HT:PCBM/Ag was fabricated, where PEDOT:PSS was treated with copper nanoparticles synthesised by chemical reduction. Transmission electron microscopy revealed spherical copper nanoparticles with increasing average particle size as the concentration of copper sulphate increases. A face-centred cubic structure with (111), (200) and (220) phases for copper nanoparticles was confirmed using X-ray diffraction. The incorporation of copper nanoparticles induced the plasmonic resonance at 562 nm resulting in light scattering, which was not observed for pristine PEDOT:PSS. The copper nanoparticles are uniformly dispersed in PEDOT:PSS as displayed by scanning electron microscopy. The increase in concentration and annealing temperature of copper nanoparticles improved the intensity of Cα = Cβ vibration mode for PEDOT:PSS and P3HT:PCBM. Incorporating copper nanoparticles in PEDOT:PSS has improved the power conversion efficiency of ITO/PEDOT:PSS:CuNPs/P3HT:PCBM/Ag solar cell from 0.09 to 5.44% as a result of the induced plasmonic resonance observed in the ultraviolet-visible spectra.
References
[1] B. Usmani et al., “Inverted PTB7-Th:PC71BM organic solar cells with 11.8% PCE via incorporation of gold nanoparticles in ZnO electron transport layer,” Sol. Energy, vol. 214, pp. 220–230, January 2021, doi: 10.1016/j.solener.2020.11.071. DOI: https://doi.org/10.1016/j.solener.2020.11.071
[2] X. Chen et al., “Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a ‘welding’ flexible transparent electrode,” Adv. Mater., vol. 32, no. 14, p. 1908478, April 2020, doi: 10.1002/adma.201908478. DOI: https://doi.org/10.1002/adma.201908478
[3] D. Sharma and R. Jha, “Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals,” Ceram. Int., vol. 43, no. 11, pp. 8488–8496, August 2017, doi: 10.1016/j.ceramint.2017.03.201. DOI: https://doi.org/10.1016/j.ceramint.2017.03.201
[4] Z. Zheng et al., “A highly efficient non‐fullerene organic solar cell with a fill factor over 0.80 enabled by a fine‐tuned hole‐transporting layer,” Adv. Mater., vol. 30, no. 34, p. 1801801, August 2018, doi: 10.1002/adma.201801801. DOI: https://doi.org/10.1002/adma.201801801
[5] V. Anju and S. K. Narayanankutty, “High dielectric constant polymer nanocomposite for embedded capacitor applications,” Mater. Sci. Eng., B, vol. 249, p. 114418, October 2019, doi: 10.1016/j.mseb.2019.114418. DOI: https://doi.org/10.1016/j.mseb.2019.114418
[6] Z. Liu, J. Park, B. Li, H. P. Chan, D. K. Yi and E.-C. Lee, “Performance improvement of organic bulk-heterojunction solar cells using complementary plasmonic gold nanorods,” Org. Electron., vol. 84, p. 105802, September 2020, doi: 10.1016/j.orgel.2020.105802. DOI: https://doi.org/10.1016/j.orgel.2020.105802
[7] A. de Morais, W. de Souza Rodrigues, D. J. Coutinho, A. F. Nogueira and J. N. de Freitas, “Investigation of nitrogen-doped carbon dot/ZnO nanocomposites and their application as interlayer in solution-processed organic light emitting diodes,” Mater. Sci. Eng., B, vol. 297, p. 116749, November 2023, doi: 10.1016/j.mseb.2023.116749. DOI: https://doi.org/10.1016/j.mseb.2023.116749
[8] A. Zinovičius, “Formation of metal-biomaterials nanocomposites and their application for the development of immunosensors,” PhD dissertation, Vilnius Tech, 2024, doi: 10.20334/2024-025-M. DOI: https://doi.org/10.20334/2024-025-M
[9] L. Duan and A. Uddin, “Progress in stability of organic solar cells,” Adv. Sci., vol. 7, no. 11, p. 1903259, June 2020, doi: 10.1002/advs.201903259. DOI: https://doi.org/10.1002/advs.201903259
[10] A. Rabajczyk, M. Zielecka, K. Cygańczuk, Ł. Pastuszka and L. Jurecki, “Nanometals-containing polymeric membranes for purification processes,” Materials, vol. 14, no. 3, p. 513, January 2021, doi: 10.3390/ma14030513. DOI: https://doi.org/10.3390/ma14030513
[11] Z. Rahimi-Ahar and L. Rahimi Ahar, “Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites,” Eur. Polym. J., vol. 218, p. 113337, September 2024, doi: 10.1016/j.eurpolymj.2024.113337. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113337
[12] T. K. Das, M. Jesionek, Y. Çelik and A. Poater, “Catalytic polymer nanocomposites for environmental remediation of wastewater,” Sci. Total Environ., vol. 901, p. 165772, November 2023, doi: 10.1016/j.scitotenv.2023.165772. DOI: https://doi.org/10.1016/j.scitotenv.2023.165772
[13] M. S. A. Darwish, M. H. Mostafa and L. M. Al-Harbi, “Polymeric nanocomposites for environmental and industrial applications,” Int. J. Mol. Sci., vol. 23, no. 3, January 2022, doi: 10.3390/ijms23031023. DOI: https://doi.org/10.3390/ijms23031023
[14] Y. Wen, J. Yuan, X. Ma, S. Wang and Y. Liu, “Polymeric nanocomposite membranes for water treatment: A review,” Environ. Chem. Lett., vol. 17, no. 4, pp. 1539–1551, May 2019, doi: 10.1007/s10311-019-00895-9. DOI: https://doi.org/10.1007/s10311-019-00895-9
[15] B. Guo, Q. Yin, J. Zhou, W. Li, K. Zhang and Y. Li, “Semiconductive polymer-doped PEDOT with high work function, conductivity, reversible dispersion, and application in organic solar cells,” ACS Sustainable Chem. Eng., vol. 7, no. 9, pp. 8206–8214, April 2019, doi: 10.1021/acssuschemeng.8b06215. DOI: https://doi.org/10.1021/acssuschemeng.8b06215
[16] J. Zhang et al., “Reducing photovoltaic property loss of organic solar cells in blade‐coating by optimizing micro‐nanomorphology via nonhalogenated solvent,” Adv. Energy Mater., vol. 12, no. 14, p. 2200165, April 2022, doi: 10.1002/aenm.202200165. DOI: https://doi.org/10.1002/aenm.202200165
[17] J. Wan et al., “Realizing high-performance organic solar cells through precise control of HOMO driving force based on ternary alloy strategy,” J. Energy Chem., vol. 65, pp. 133–140, February 2022, doi: 10.1016/j.jechem.2021.05.053. DOI: https://doi.org/10.1016/j.jechem.2021.05.053
[18] Z. Su, L. Wang, Y. Li, H. Zhao, B. Chu and W. Li, “Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells,” Nanoscale Res. Lett., vol. 7, no. 1, pp. 1–6, August 2012, doi: 10.1186/1556-276X-7-465. DOI: https://doi.org/10.1186/1556-276X-7-465
[19] M. Kaltenbrunner et al., “Ultrathin and lightweight organic solar cells with high flexibility,” Nature Communications, vol. 3, p. 770, April 2012, doi: 10.1038/ncomms1772. DOI: https://doi.org/10.1038/ncomms1772
[20] S. Liu, Y. Sun, L. Chen, Q. Zhang, X. Li and J. Shuai, “A review on plasmonic nanostructures for efficiency enhancement of organic solar cells,” Mater. Today Phys., vol. 24, p. 100680, May 2022, doi: 10.1016/j.mtphys.2022.100680. DOI: https://doi.org/10.1016/j.mtphys.2022.100680
[21] P. Shen, Y. Liu, Y. Long, L. Shen and B. Kang, “High-performance polymer solar cells enabled by copper nanoparticles-induced plasmon resonance enhancement,” J. Phys. Chem. C, vol. 120, no. 16, pp. 8900–8906, April 2016, doi: 10.1021/acs.jpcc.6b02802. DOI: https://doi.org/10.1021/acs.jpcc.6b02802
[22] Z. Liu, S. Y. Lee and E.-C. Lee, “Copper nanoparticle incorporated plasmonic organic bulk-heterojunction solar cells,” Appl. Phys. Lett., vol. 105, no. 22, December 2014, doi: 10.1063/1.4903749. DOI: https://doi.org/10.1063/1.4903749
[23] C.-L. Huang, G. Kumar, G. D. Sharma and F.-C. Chen, “Plasmonic effects of copper nanoparticles in polymer photovoltaic devices for outdoor and indoor applications,” Appl. Phys. Lett., vol. 116, no. 25, June 2020, doi: 10.1063/5.0010427. DOI: https://doi.org/10.1063/5.0010427
[24] A. Ng et al., “Enhanced performance of PTB7:PC₇₁BM solar cells via different morphologies of gold nanoparticles,” ACS Appl. Mater. Interfaces, vol. 6, no. 23, pp. 20676–20684, November 2014, doi: 10.1021/am504250w. DOI: https://doi.org/10.1021/am504250w
[25] Q. Li et al., “Decahedral-shaped Au nanoparticles as plasmonic centers for high performance polymer solar cells,” Org. Electron., vol. 43, pp. 33–40, April 2017, doi: 10.1016/j.orgel.2017.01.010. DOI: https://doi.org/10.1016/j.orgel.2017.01.010
[26] A. Iwan, B. Boharewicz, I. Tazbir, A. Sikora and B. Zboromirska-Wnukiewicz, “Silver nanoparticles in PEDOT:PSS layer for polymer solar cell application,” Int. J. Photoenergy, vol. 2015, March 2015, doi: 10.1155/2015/764938. DOI: https://doi.org/10.1155/2015/764938
[27] J. Rivera-Taco et al., “The role of silver nanoparticles in the hole transport layer in organic solar cells based on PBDB-T:ITIC,” J. Electron. Mater., vol. 50, no. 7, pp. 4118–4127, April 2021, doi: 10.1007/s11664-021-08919-3. DOI: https://doi.org/10.1007/s11664-021-08919-3
[28] D. Duche et al., “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 8, pp. 1377–1382, August 2009, doi: 10.1016/j.solmat.2009.02.028. DOI: https://doi.org/10.1016/j.solmat.2009.02.028
[29] S. Vedraine et al., “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 95, pp. S57–S64, May 2011, doi: 10.1016/j.solmat.2010.12.045. DOI: https://doi.org/10.1016/j.solmat.2010.12.045
[30] M. Dhonde, K. Sahu, V. V. S. Murty, S. S. Nemala and P. Bhargava, “Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell,” Electrochim. Acta, vol. 249, pp. 89–95, September 2017, doi: 10.1016/j.electacta.2017.07.187. DOI: https://doi.org/10.1016/j.electacta.2017.07.187
[31] J. Chen et al., “Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells,” Nano Res., vol. 8, no. 3, pp. 1017–1025, October 2015, doi: 10.1007/s12274-014-0583-z. DOI: https://doi.org/10.1007/s12274-014-0583-z
[32] T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc and M. C. Dang, “The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method,” Adv. Nat. Sci.: Nanosci., vol. 2, no. 2, p. 025004, April 2011, doi: 10.1088/2043-6262/2/2/025004. DOI: https://doi.org/10.1088/2043-6262/2/2/025004
[33] J. S. Nyarige, T. P. J. Krüger and M. Diale, “Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis,” Surf. Interfaces, vol. 18, p. 100394, March 2020, doi: 10.1016/j.surfin.2019.100394. DOI: https://doi.org/10.1016/j.surfin.2019.100394
[34] M. Samim, N. Kaushik and A. Maitra, “Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction,” Bull. Mater. Sci., vol. 30, no. 5, pp. 535–540, November 2007, doi: 10.1007/s12034-007-0083-9. DOI: https://doi.org/10.1007/s12034-007-0083-9
[35] J. Suárez-Cerda, H. Espinoza-Gómez, G. Alonso-Núñez, I. A. Rivero, Y. Gochi-Ponce and L. Z. Flores-López, “A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents,” J. Saudi Chem. Soc., vol. 21, no. 3, pp. 341–348, March 2017, doi: 10.1016/j.jscs.2016.10.005. DOI: https://doi.org/10.1016/j.jscs.2016.10.005
[36] T. Thirugnanasambandan and M. Alagar, “X-ray diffraction studies of copper nanopowder,” Arch. Phys. Res., vol. 1, March 2010.
[37] A. J. Olivares et al., “Nanostructural modification of PEDOT:PSS for high charge carrier collection in hybrid frontal interface of solar cells,” Polymers, vol. 11, no. 6, doi: 10.3390/polym11061034. DOI: https://doi.org/10.3390/polym11061034
[38] P. V. Almeida, C. Izumi, H. F. D. Santos and A. C. Sant’Ana, “Spectroscopic characterization of PEDOT:PSS conducting polymer by resonance Raman and SERRS spectroscopies,” Quím. Nova, vol. 42, no. 9, pp. 1073–1080, October 2019, doi: 10.21577/0100-4042.20170417. DOI: https://doi.org/10.21577/0100-4042.20170417
[39] Y. Su, S. Qiu, Y. Liu, D. Yang, H. Zhao and L. Wang, “PEDOT: PSS-exfoliated graphene to improve the corrosion resistance of waterborne epoxy coating,” Int. J. Electrochem. Sci, vol. 14, no. 5, pp. 4595–4610, May 2019, doi: 10.20964/2019.05.37. DOI: https://doi.org/10.20964/2019.05.37
[40] S. Xiong, L. Zhang and X. Lu, “Conductivities enhancement of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent electrodes with diol additives,” Polym. Bull., vol. 70, pp. 237–247, August 2012, doi: 10.1007/s00289-012-0833-8. DOI: https://doi.org/10.1007/s00289-012-0833-8
[41] P. Veerender et al., “Probing the annealing induced molecular ordering in bulk heterojunction polymer solar cells using in-situ Raman spectroscopy,” Sol. Energy Mater. Sol. Cells, vol. 120, part B, pp. 526–535, January 2014, doi: 10.1016/j.solmat.2013.09.034. DOI: https://doi.org/10.1016/j.solmat.2013.09.034
[42] F. Otieno et al., “Enhancement of organic photovoltaic device performance via P3HT:PCBM solution heat treatment,” Thin Solid Films, vol. 625, pp. 62–69, March 2017, doi: 10.1016/j.tsf.2017.01.047. DOI: https://doi.org/10.1016/j.tsf.2017.01.047
[43] A. Yadav, A. Upadhyaya, S. Gupta, A. Verma and C. Mohan, “Solution processed graphene as electron transport layer for bulk heterojunction based devices,” Superlattices Microstruct., vol. 120, August 2018, doi: 10.1016/j.spmi.2018.06.037. DOI: https://doi.org/10.1016/j.spmi.2018.06.037
[44] P. Khanna, P. More, J. Jawalkar, Y. Patil and N. K. Rao, “Synthesis of hydrophilic copper nanoparticles: Effect of reaction temperature,” J. Nanoparticle Res., vol. 11, no. 4, pp. 793–799, June 2009, doi: 10.1007/s11051-008-9441-9. DOI: https://doi.org/10.1007/s11051-008-9441-9
[45] L. Q. Pham et al., “Copper nanoparticles incorporated with conducting polymer: Effects of copper concentration and surfactants on the stability and conductivity,” J. Colloid Interface Sc., vol. 365, no. 1, pp. 103–109, January 2012, doi: 10.1016/j.jcis.2011.09.041. DOI: https://doi.org/10.1016/j.jcis.2011.09.041
[46] M. Muniz-Miranda, C. Gellini and E. Giorgetti, “Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation,” J. Phys. Chem. C, vol. 115, no. 12, pp. 5021–5027, January 2011, doi: 10.1021/jp1086027. DOI: https://doi.org/10.1021/jp1086027
[47] M. Ismail, “Green synthesis and characterizations of copper nanoparticles,” Mater. Chem. Phys., vol. 240, p. 122283, January 2020, doi: 10.1016/j.matchemphys.2019.122283. DOI: https://doi.org/10.1016/j.matchemphys.2019.122283
[48] F. Otieno et al., “Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer,” AIP Adv., vol. 7, no. 8, p. 085302, August 2017, doi: 10.1063/1.4995803. DOI: https://doi.org/10.1063/1.4995803
[49] M. Shaban, M. Benghanem, A. Almohammedi and M. Rabia, “Optimization of the active layer P3HT:PCBM for organic solar cell,” Coatings, vol. 11, no. 7, p. 863, July 2021, doi: 10.3390/coatings11070863. DOI: https://doi.org/10.3390/coatings11070863
[50] G. Hassan, M. Sajid and C. Choi, “Highly sensitive and full range detectable humidity sensor using PEDOT:PSS, methyl red and graphene oxide materials,” Sci. Rep., vol. 9, no. 1, p. 15227, October 2019, doi: 10.1038/s41598-019-51712-w. DOI: https://doi.org/10.1038/s41598-019-51712-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thapelo Ephraim Seimela, Justine Sageka Nyarige, Nolwazi Nombona, Mmantsae Diale

This work is licensed under a Creative Commons Attribution 4.0 International License.