Bioengineered Crystalline Single-Phase Potassium Chromate Nanocrystals
DOI:
https://doi.org/10.25159/3005-2602/16278Keywords:
green nanosynthesis, chromates, bioengineering, natural extractAbstract
This article reports for the first time on the possibility of the biosynthesis of single-phase potassium chromate (K2CrO4). This was achieved by using the natural extract of dried citrus peel as both an effective chelating agent and an original green source of potassium (K). For the bioengineering of K2CrO4 at room temperature and atmospheric pressure, H2O as the unique universal solvent and Cr(NO₃)₃ • 9H₂O as Cr source were used. The validation of such a bioengineered K2CrO4 was carried out specifically via Raman spectroscopy. In this investigation, the various intrinsic Raman modes of single-phase K2CrO4 were observed in full agreement with B2g (352 cm-1), Ag + B2g (396 cm-1), Ag + B2g (853 cm-1), B3g (875 cm-1) and Ag (905 cm-1) inherent in K2CrO4 (chromate) vibrational modes, which are different from those in K2Cr2O7 (dichromate).
References
[1] N. Zafar Ali et al., “A New Polymorph of Potassium Chromate(III), β-KCrO2, and Reinvestigation of α-KCrO2,” Z. Anorg. Allg. Chem., vol. 639, no. 2, pp. 241–245, Feb. 2013, doi: 10.1002/zaac.201200476. DOI: https://doi.org/10.1002/zaac.201200476
[2] T. J. R. Weakley et al., “Phase transitions in K2Cr2O7 and structural redeterminations of phase II,” Acta Cryst. B, vol. 60, pp. 705–715, 2004, doi: 10.1107/S010876810402333X. DOI: https://doi.org/10.1107/S010876810402333X
[3] S. V. Krivovichev et al., “β-K2Cr2O7,” Acta Cryst. C, vol. C56, pp. 629–630, 2000, doi: 10.1107/S0108270100003917. DOI: https://doi.org/10.1107/S0108270100003917
[4] S. V. Krivovichev, “Structural complexity of minerals: information storage and processing in the mineral world,” Mineral. Mag., vol. 77, no. 3, pp. 275–326, Apr. 2013, doi: 10.1180/minmag.2013.077.3.05. DOI: https://doi.org/10.1180/minmag.2013.077.3.05
[5] M. Natarajan and E. A. Secco, “Anisotropic Conductivity and Phase Transformation Studies in Potassium Chromate Crystals,” Can. J. Chem., vol. 52, no. 13, Jul. 1974, doi: 10.1139/v74-354. DOI: https://doi.org/10.1139/v74-354
[6] M, Maaza et al., “Functional nanostructured oxides,” Vacuum, vol. 114, pp. 172–187, Apr. 2015, doi: 10.1016/j.vacuum.2014.12.023. DOI: https://doi.org/10.1016/j.vacuum.2014.12.023
[7] S. Liang et al., “Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH,” Ceram. Int., vol. 40, no. 3, pp. 4367–4373, Apr. 2014, doi: 10.1016/j.ceramint.2013.08.107. DOI: https://doi.org/10.1016/j.ceramint.2013.08.107
[8] S. M. Abbas et al., “High rate capability and long cycle stability of Cr2O3 anode with CNTs for lithium ion batteries,” Electrochim. Acta, vol. 212, pp. 260–269, Sept. 2016, doi: 10.1016/j.electacta.2016.06.156. DOI: https://doi.org/10.1016/j.electacta.2016.06.156
[9] A. B. Gaspar et al., “Characterization of chromium species in catalysts for dehydrogenation and polymerization,” J. Mol. Catal. A Chem., vol. 203, no. 1–2, pp. 251–266, Sept. 2003, doi: 10.1016/S1381-1169(03)00381-9. DOI: https://doi.org/10.1016/S1381-1169(03)00381-9
[10] N. Kohli et al., “Influence of pH on particle size and sensing response of chemically synthesized chromium oxide nanoparticles to alcohols,” Sens. Actuators B Chem., vol. 158, no. 1, pp. 259–264, Nov. 2011, doi: 10.1016/j.snb.2011.06.016. DOI: https://doi.org/10.1016/j.snb.2011.06.016
[11] K. Anandan and V. Rajendran, “Studies on structural, morphological, magnetic and optical properties of chromium sesquioxide (Cr2O3) nanoparticles: Synthesized via facile solvothermal process by different solvents,” Mater. Sci. Semicond., vol. 19, pp. 136–144, Mar. 2014, doi: 10.1016/j.mssp.2013.12.004. DOI: https://doi.org/10.1016/j.mssp.2013.12.004
[12] S. Khamlich et al., “Black Cr/α-Cr2O3 nanoparticles based solar absorbers,” Phys. B Condens. Matter, vol. 407, no. 10, pp. 1509–1512, May 2012, doi: 10.1016/j.physb.2011.09.073. DOI: https://doi.org/10.1016/j.physb.2011.09.073
[13] H. E. A. Mohamed et al., “Phyto-Fabricated Cr2O3 Nanoparticle for Multifunctional Biomedical Applications,” Nanomed., vol. 15, no. 17, pp. 1653–1669, Jul. 2020, doi: 10.2217/nnm-2020-0129. DOI: https://doi.org/10.2217/nnm-2020-0129
[14] D. Hassan et al., “Physiochemical properties and novel biological applications of Callistemon viminalis‐mediated α‐Cr2O3 nanoparticles,” Appl. Organomet. Chem., vol. 33, no. 8, p. e5041, Aug. 2019, doi: 10.1002/aoc.5041. DOI: https://doi.org/10.1002/aoc.5041
[15] B. T. Sone et al., “Single-phase α-Cr2O3 nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract,” Green Chem. Lett. Rev., vol. 9, no. 2, pp. 85–90, Apr. 2016, doi: 10.1080/17518253.2016.1151083. DOI: https://doi.org/10.1080/17518253.2016.1151083
[16] D. M. Adams et al., “Single-crystal vibrational spectrum of potassium chromate,” J. Chem. Soc. A, no. 0, pp. 946–947, 1971, doi: 10.1039/j19710000946. DOI: https://doi.org/10.1039/j19710000946
[17] R. L. Carter and C. E. Bricker, “Laser-Raman spectra of crystalline K2Cr04, Rb2CrO4 and Cs2CrO4,” Spectrochim. Acta A, vol. 27, no. 4, pp. 569–580, Apr. 1971, doi: 10.1016/0584-8539(71)80260-X. DOI: https://doi.org/10.1016/0584-8539(71)80260-X
[18] G. Serghiou and C. Guillaume, “Stability of K2CrO4 to 50GPa using Raman spectroscopy measurements,” Journal of Solid State Chemistry, vol. 177, no. 12, pp. 4672–4679, Dec. 2004, doi: 10.1016/j.jssc.2004.07.021. DOI: https://doi.org/10.1016/j.jssc.2004.07.021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abdoulaye Diallo, Raphael Mmaduka Obodo, Ishaq Ahmad, Balla Diop Ngom

This work is licensed under a Creative Commons Attribution 4.0 International License.