Exploring the Potential of Co3O4@MnO2@ZnO Enhanced with Vitex Doniana Leaf Extract for Supercapacitor Electrode Applications

Authors

DOI:

https://doi.org/10.25159/3005-2602/16295

Keywords:

electrodes, leaf extract, specific capacitance and efficiency, supercapacitor, Vitex doniana

Abstract

The use of transition metal oxides as supercapacitor electrodes has attracted a great deal of attention because of their properties such as superior electrochemical performances, availability, low toxicity and affordability. It has been noted that Co3O4@MnO2@ZnO composites augmented with Vitex doniana leaf extract as an electrode material is being investigated for the first time in the context of supercapacitors. The Co3O4@MnO2@ZnO composite electrode mediated with Vitex doniana leaf extract used in this study was produced using the chemical bath deposition technique. The findings demonstrated that Co3O4@MnO2@ZnO nanocomposites enhanced with Vitex doniana leaf extract are good material for supercapacitor electrode fabrication. This is demonstrated by the achievement of maximum specific capacitances of 1 215 F/g using cyclic voltammetry and 1 250 F/g at a current density of 0.5 A/g using galvanostatic charge–discharge. After 10 000 complete cycles, Co3O4@MnO2@ZnO (CMZ/150) showed exceptional stability, with a 97.25% retention rate.

References

[1] R. M. Obodo et al., “Effects of copper ion irradiation on CuyZn1-2y-xMny/GO supercapacitive electrodes,” J. Appl. Electrochem., vol. 51, pp. 829–845, Mar. 2021, doi: 10.1007/s10800-021-01543-3. DOI: https://doi.org/10.1007/s10800-021-01543-3

[2] L. Li, Z. A. Hu, N. An, Y. Y. Yang, Z. M. Li and H. Y. Wu, “Facile Synthesis of MnO2/CNTs Composite for Supercapacitor Electrodes with Long Cycle Stability,” J. Phys. Chem. C, vol. 118, no. 40, pp. 22865–22872, Sept. 2014, doi: 10.1021/jp505744p. DOI: https://doi.org/10.1021/jp505744p

[3] R. M. Obodo, H. E. Nsude, S. C. Ezike, C. Ononogbo, I. Ahmad, M. Maaza and F. I. Ezema, “Exploring dual synergistic effects of CeO2@ZnO mediated sarcophrynium brachystachys leaf extract nanoparticles for supercapacitor electrodes applications,” Hybrid Adv., vol. 5, p. 100143, Apr. 2024, doi: 10.1016/j.hybadv.2024.100143. DOI: https://doi.org/10.1016/j.hybadv.2024.100143

[4] T. Brousse, D. Bélanger and J. W. Long, “To Be or Not To Be Pseudocapacitive?,” J. Electrochem. Soc., vol. 162, no. 5, p. A5185, Mar. 2015, doi: 10.1149/2.0201505jes. DOI: https://doi.org/10.1149/2.0201505jes

[5] R. M. Obodo, A. C. Nwanya, I. S. Ike, I. Ahmad and F. I. Ezema, “Role of Carbon Derivatives in Enhancing Metal Oxide Performances as Electrodes for Energy Storage Devices,” in Chemically Deposited Nanocrystalline Metal Oxide Thin Films, F. I. Ezema, C. D. Lokhande and R. Jose, Eds, Cham. Cham, Springer, 2021, pp. 469–488, doi: 10.1007/978-3-030-68462-4_18. DOI: https://doi.org/10.1007/978-3-030-68462-4_18

[6] Y. Zhu, L. Peng, D. Chen and G. Yu, “Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage,” Nano Lett., vol. 61, no. 1, pp. 742–747, Dec. 2016, doi: 10.1021/acs.nanolett.5b04610. DOI: https://doi.org/10.1021/acs.nanolett.5b04610

[7] R. M. Obodo et al., “Radiations Induced Defects in electrode materials for energy storage devices,” Radiat. Phys. Chem., vol. 191, p. 109838, Feb. 2022, doi: 10.1016/j.radphyschem.2021.109838. DOI: https://doi.org/10.1016/j.radphyschem.2021.109838

[8] R. Dubey and V. Guruviah, “Review of carbon-based electrode materials for supercapacitor energy storage,” Ionics, vol. 25, no. 4, pp. 1419–1445, Feb. 2019, doi: 10.1007/s11581-019-02874-0. DOI: https://doi.org/10.1007/s11581-019-02874-0

[9] R. M. Obodo et al., “Performance optimization of bimetallic Co3(PO4)2@Ni3(PO4)2 electrodes for supercapacitive applications,” J. Mater. Sci: Mater. Electron., vol. 35, p. 351, Feb. 2024, doi: 10.1007/s10854-024-12079-5. DOI: https://doi.org/10.1007/s10854-024-12079-5

[10] B. K. Kim, S. Sy, A. Yu and J. Zhang, “Electrochemical Supercapacitors for Energy Storage and Conversion,” in Handbook of Clean Energy Systems, John Wiley & Sons, 2015, doi: 10.1002/9781118991978.hces112. DOI: https://doi.org/10.1002/9781118991978.hces112

[11] R. M. Obodo, A. C. Nwanya, I. Ahmad, M. A. Kebede and F. I. Ezema, “Carbon Derivatives in Performance Improvement of Lithium-Ion Battery Electrodes,” in Electrode Materials for Energy Storage and Conversion, A. M. Kebede and F. I. Ezema, Taylor & Francis, CRC Press, 2021, pp. 23–33, doi: 10.1201/9781003145585-2. DOI: https://doi.org/10.1201/9781003145585-2

[12] S. J. Ding, T. Zhu, J. S. Chen, Z. Y. Wang, C. L. Yuan and X. W. Lou, “Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance,” J. Mater. Chem., vol. 21, pp. 6602–6606, 2011, doi: 10.1039/c1jm00017a. DOI: https://doi.org/10.1039/c1jm00017a

[13] W. Li et al., “Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors,” Sci. Rep., vol. 5, pp. 9277–9282, Mar. 2015, doi: 10.1038/srep09277. DOI: https://doi.org/10.1038/srep09277

[14] C. Z. Yuan et al., “Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors,” J. Mater. Chem., vol. 45, pp. 18183–18185, 2011, doi: 10.1039/c1jm14173b. DOI: https://doi.org/10.1039/c1jm14173b

[15] L. Cao, F. Xu, Y. Y. Liang and H. L. Li, “Preparation of the Novel Nanocomposite Co(OH)2/Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density,” Adv. Mater., vol. 16, no. 20, pp. 1853–1857, Oct. 2004, doi: 10.1002/adma.200400183. DOI: https://doi.org/10.1002/adma.200400183

[16] J. M. Song et al., “One-pot synthesis of ZnO decorated with AgBr nanoparticles and its enhanced photocatalytic properties,” Cryst. Eng. Comm., vol. 13, pp. 2652–2659, 2014, doi: 10.1039/c3ce41943f. DOI: https://doi.org/10.1039/c3ce41943f

[17] J. M. Song, S. S. Zhang and S. H. Yu, “Multifunctional Co0.85Se-Fe3O4 Nanocomposites: Controlled Synthesis and Their Enhanced Performances for Efficient Hydrogenation of p-Nitrophenol and Adsorbents,” Small, vol. 10, no. 4, pp. 717–724, Feb. 2014, doi: 10.1002/smll.201301386. DOI: https://doi.org/10.1002/smll.201301386

[18] C. Li, S. Bolisetty and R. Mezzenga, “Hybrid Nanocomposites of Gold Single-Crystal Platelets and Amyloid Fibrils with Tunable Fluorescence,” Adv. Mater., vol. 25, no. 27, pp. 3694–3700, Jul. 2013, doi: 10.1002/adma.201300904. DOI: https://doi.org/10.1002/adma.201300904

[19] J. Zhang, J. M. Song, H. L. Niu, C. J. Mao, S. Y. Zhang and Y. H. Shen, “ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone,” Sens. Actuator B-Chem., vol. 221, pp. 55–62, Dec. 2015, doi: 10.1016/j.snb.2015.06.040. DOI: https://doi.org/10.1016/j.snb.2015.06.040

[20] Y. Jiao, J. Liu, B. S. Yin, S. W. Zhang, F. Y. Qu and X. Wu, “Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts,” Nano Ener., vol. 10, pp. 90–98, Nov. 2014, doi: 10.1016/j.nanoen.2014.09.002. DOI: https://doi.org/10.1016/j.nanoen.2014.09.002

[21] D. Cai et al., “High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co3O4 Core/Shell Heterostructures on Nickel Foam,” ACS Appl. Mater. Interfaces, vol. 6, no. 18, pp. 15905–15912, Aug. 2014, doi: 10.1021/am5035494. DOI: https://doi.org/10.1021/am5035494

[22] M. Maaza et al., “Peculiar Size Effects in Nanoscaled Systems,” Nano-Horizons, vol. 1, no. 1, pp. 1–36, Jul. 2022, doi: 10.25159/NanoHorizons.9d53e2220e31. DOI: https://doi.org/10.25159/NanoHorizons.9d53e2220e3

[23] R. M. Obodo et al., “Evaluation of 8.0 MeV Carbon (C2+) Irradiation Effects on Hydrothermally Synthesized Co3O4-CuO-ZnO@GO Electrodes for Supercapacitor Applications,” Electroanal., vol. 32, no. 12, pp. 2958–2968, Dec. 2020, doi: 10.1002/elan.202060382.

[24] A. O. Juma, E. A. A. Arbab, C. M. Muiva, L. M. Lepodise and T. G. Mola, “Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite,” J. Alloys Compd, vol. 723, pp. 866–872, Nov. 2017, doi: 10.1016/j.jallcom.2017.06.288. DOI: https://doi.org/10.1016/j.jallcom.2017.06.288

[25] M. H. Habibi and B. Karimi, “Fabrication and Characterization of CuO-ZnO-Cu2O Nano-Composites by Sol-Gel Route: Effect of Calcinations Temperature,” Syn. React. Inorg. Metaorg. Nanometal Chem., vol. 44, no. 9, pp. 1358–1362, 2014, doi: 10.1080/15533174.2013.801858. DOI: https://doi.org/10.1080/15533174.2013.801858

[26] R. M. Obodo et al., “Annealing optimization of graphitized Co3O4@CuO@NiO composite electrodes for supercapacitor applications,” Energy Storage, vol. 4, no. 5, p. e347, Oct. 2022, doi: 10.1002/est2.347.

[27] L. Dinan, N. Z. Mamadalieva and R. Lafont, “Dietary Phytoecdysteroids,” in Handbook of Dietary Phytochemicals, J. Xiao, S. Sarker and Y. Asakawa, Eds., Singapore: Springer, 2019, pp. 1–54, doi: 10.1007/978-981-13-1745-3_35-1. DOI: https://doi.org/10.1007/978-981-13-1745-3_35-1

[28] J. C. Okafor, “Development of forest tree crops for food supplies in Nigeria,” For. Ecol. Manag., vol. 1, pp. 235–247, 1976–1977, doi: 10.1016/0378-1127(76)90028-1. DOI: https://doi.org/10.1016/0378-1127(76)90028-1

[29] J. C. Okafor, “Edible indigenous woody plants in the rural economy of the Nigerian forest zone,” For. Ecol. Manag., vol. 3, pp. 45–55, 1980, doi: 10.1016/0378-1127(80)90004-3. DOI: https://doi.org/10.1016/0378-1127(80)90004-3

[30] N. Das, S. K. Mishra, A. Bishayee, E. S. Ali and A. Bishayee, “The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review,” Acta Pharm. Sin. B., vol. 11, no. 7, pp. 1740–1766, Jul. 2021, doi: 10.1016/j.apsb.2020.10.012. DOI: https://doi.org/10.1016/j.apsb.2020.10.012

[31] S. Adjei et al., “Fruits of Vitex doniana sweet: toxicity profile, anti-inflammatory and antioxidant activities, and quantification of one of its bioactive constituents oleanolic acid,” Heliyon, vol. 7, no. 9, p. e07910, Sept. 2021, doi: 10.1016/j.heliyon.2021.e07910. DOI: https://doi.org/10.1016/j.heliyon.2021.e07910

[32] J. P. Sawant, S. F. Shaikh, R. B. Kale and H. M. Pathan, “Chemical Bath Deposition of CulnS2 Thin Films and Synthesis of CulnS2 Nanocrystals: A Review,” Eng. Sci., vol. 12, pp. 1–12, Jan. 2020, doi: 10.30919/es8d1142. DOI: https://doi.org/10.30919/es8d1142

[33] A. A. Bunaciu, E. G. Udriştioiu and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Crit. Rev. Anal. Chem., vol. 45, no. 4, pp. 289–299, May 2015, doi: 10.1080/10408347.2014.949616. DOI: https://doi.org/10.1080/10408347.2014.949616

[34] N. K. Elumalai, C. Vijila, R. Jose, A. Uddin and S. Ramakrishna, “Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications,” Mater. Renew. Sustain. Energy, vol. 4, no. 11, 2015, doi: 10.1007/s40243-015-0054-9. DOI: https://doi.org/10.1007/s40243-015-0054-9

[35] S. Fan, L. Li, X. Wang, C. Gua and J. Tu, “Metal oxide/hydroxide-based materials for supercapacitors,” RSC Adv., vol. 79, pp. 41910–41921, 2014, doi: 10.1039/C4RA06136E. DOI: https://doi.org/10.1039/C4RA06136E

[36] L. Fang et al., “Fabrication of hybrid cauliflower-like nanoarchitectures by in situ grown ZnO nanoparticals on VS2 ultrathin nanosheets for high performance supercapacitors,” Colloids Surf. A Physicochem. Eng. Asp., vol. 501, pp. 42–48, Jul. 2016, doi: 10.1016/j.colsurfa.2016.04.047. DOI: https://doi.org/10.1016/j.colsurfa.2016.04.047

[37] P. Prabakaran, S. Prabhu, M. Selvaraj, M. Navaneethan, P. Ramu and R. Ramesh, “Synthesis of r-GO-incorporated CoWO4 nanostructure for high-performance supercapattery applications,” J. Mater. Sci. Mater. Electron., vol. 33, pp. 9312–9323, Nov. 2021, doi: 10.1007/s10854-021-07297-0. DOI: https://doi.org/10.1007/s10854-021-07297-0

[38] S. H. Kim, Y. I. Kim, J. H. Park and J. M. Ko, “Cobalt-Manganese Oxide/Carbon-Nanofibre Composite Electrodes for Supercapacitors,” Int. J. Electrochem. Sci., vol. 4, no. 11, pp. 1489–1496, Nov. 2009, doi: 10.1016/S1452-3981(23)15239-4. DOI: https://doi.org/10.1016/S1452-3981(23)15239-4

[39] S. W. Kim et al., “Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries,” Nano Res., vol. 4, pp. 505–510, Feb. 2011, doi: 10.1007/s12274-011-0106-0. DOI: https://doi.org/10.1007/s12274-011-0106-0

[40] N. Priyadharsini, A. Shanmugavani, L. Vasylechko and R. K. Selvan, “Sol-gel synthesis, structural refinement, and electrochemical properties of potassium manganese phosphate for supercapacitors,” Ionics, vol. 24, no. 7, pp. 2073–2082, Jan. 2018, doi: 10.1007/s11581-018-2449-y. DOI: https://doi.org/10.1007/s11581-018-2449-y

[41] M. Al-Omair, A. Touny and M. Saleh, “Reflux-based synthesis and electrocatalytic characteristics of nickel phosphate nanoparticles,” J. Power Sources, vol. 342, pp. 1032–1039, Feb. 2017, doi: 10.1016/j.jpowsour.2016.09.079. DOI: https://doi.org/10.1016/j.jpowsour.2016.09.079

[42] N. N. Prokopchuk, V. A. Kopilevich and L. V. Voitenko, “Preparation of double nickel(II) cobalt(II) phosphates with controlled cationic composition,” Russ. J. Appl. Chem., vol. 81, no. 3, pp. 386–391, May 2008, doi: 10.1134/S1070427208030063. DOI: https://doi.org/10.1134/S1070427208030063

[43] D. Yang, Q. Yu, L. Gao, L. Mao and J. Yang, “The additive effect of graphene in nickel phosphate/graphene composite and enhanced activity for electrochemical oxidation of methanol,” Appl. Surf. Sci., vol. 416, pp. 503–510, Sept. 2017, doi: 10.1016/j.apsusc.2017.04.208. DOI: https://doi.org/10.1016/j.apsusc.2017.04.208

[44] P. Noisong, C. Danvirutai, T. Srithanratana and B. Boonchom, “Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate,” Solid State Sci., vol. 10, no. 11, pp. 1598–1604, Nov. 2008, doi: 10.1016/j.solidstatesciences.2008.02.020. DOI: https://doi.org/10.1016/j.solidstatesciences.2008.02.020

[45] T. P. Vijitha and D. Saranya, “Corn Silk – A Medicinal Boon,” Int. J. ChemTech Res., vol. 10, no. 10, pp. 129–137, 2017.

[46] M. Zhang et al., “Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays,” J. Power Sources, vol. 418, pp. 202–210, Apr. 2019, doi: 10.1016/j.jpowsour.2019.02.041. DOI: https://doi.org/10.1016/j.jpowsour.2019.02.041

[47] M. M. Faisal, S. R. Ali, M. Z. Iqbal, M. W. Iqbal, A. Numan and K. Sanal, “Effect of polyaniline on the performance of zinc phosphate as a battery-grade material for supercapattery,” J. Energy Storage, vol. 44, p. 103329, Dec. 2021, doi: 10.1016/j.est.2021.103329.

[48] N. S. Punde, A. S. Rajpurohit and A. K. Srivastava, “Fabrication of an Advanced Symmetric Supercapattery Based on Nanostructured Bismuth-Cobalt-Zinc Ternary Oxide Anchored on Silicon Carbide Hybrid Composite Electrode,” Energy Technol., vol. 7, no. 9, p. 1900387, Sept. 2019, doi: 10.1002/ente.201900387. DOI: https://doi.org/10.1002/ente.201900387

[49] G. He et al., “Dumbbell-like ZnO nanoparticles-CeO2 nanorods composite by one-pot hydrothermal route and their electrochemical charge storage,” Appl. Surf. Sci., vol. 366, pp. 129–138, Mar. 2016, doi: 10.1016/j.apsusc.2016.01.027. DOI: https://doi.org/10.1016/j.apsusc.2016.01.027

[50] A. Arshad, J. Iqbal and Q. Mansoor, “NiO-nanoflakes grafted graphene: an excellent photocatalyst and a novel nanomaterial for achieving complete pathogen control,” Nanoscale, vol. 42, pp. 16321–16328, 2017, doi: 10.1039/C7NR05756C. DOI: https://doi.org/10.1039/C7NR05756C

[51] A. K. Das, U. S. V. Pan, N. H. Kim and J. H. Lee, “Nanostructured CeO2/NiV-LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst,” Chem. Eng. J., vol. 417, p. 128019, Aug. 2021, doi: 10.1016/j.cej.2020.128019. DOI: https://doi.org/10.1016/j.cej.2020.128019

[52] R. M. Obodo et al., “Evaluation of 8.0 MeV Carbon (C2+) Irradiation Effects on Hydrothermally Synthesized Co3O4-CuO-ZnO@GO Electrodes for Supercapacitor Applications,” Electroanalysis, vol. 32, no. 12, pp. 2958–2968, Dec. 2020, doi: 10.1002/elan.202060382. DOI: https://doi.org/10.1002/elan.202060382

[53] M. M. Faisal, S. R. Ali, M. Z. Iqbal, M. Z. Iqbal, M. W. Iqbal, A. Numan and K. C. Sanal, “Effect of polyaniline on the performance of zinc phosphate as a battery-grade material for supercapattery,” J. Energy Storage, vol. 44, p. 103329, Dec. 2021, doi: 10.1016/j.est.2021.103329. DOI: https://doi.org/10.1016/j.est.2021.103329

[54] R. K. Muhammad et al., “Cerium oxide nanosheets-based tertiary composites (CeO2/ZnO/ZnWO4) for supercapattery application and evaluation of faradic & non-faradic capacitive distribution by using Donn’s model,” J. Energy Storage, vol. 55, p. 105778, Nov. 2022, doi: 10.1016/j.est.2022.105778. DOI: https://doi.org/10.1016/j.est.2022.105778

[55] G. G. Amatucci, F. Badway, A. Du Pasquier and T. Zheng, “An Asymmetric Hybrid Nonaqueous Energy Storage Cell,” J. Electrochem. Soc., vol. 148, p. A930, Jul. 2001, doi: 10.1149/1.1383553. DOI: https://doi.org/10.1149/1.1383553

[56] R. M. Obodo et al., “Annealing optimization of graphitized Co3O4@CuO@NiO composite electrodes for supercapacitor applications,” Energy Storage, vol. 4, no. 5, p. e347, Oct. 2022, doi: 10.1002/est2.347. DOI: https://doi.org/10.1002/est2.347

[57] S. J. Marje et al., “Microsheets like nickel cobalt phosphate thin films as cathode for hybrid asymmetric solid-state supercapacitor: Influence of nickel and cobalt ratio variation,” Chem. Eng. J., vol. 429, p. 132184, Feb. 2022, doi: 10.1016/j.cej.2021.132184. DOI: https://doi.org/10.1016/j.cej.2021.132184

[58] Y. M. Chen, J. H. Cai, Y. S. Huang, K. Y. Lee and D. S. Tsai, “Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors,” Nanotechnology, vol. 22, p. 115706, Feb. 2011, doi: 10.1088/0957-4484/22/11/115706. DOI: https://doi.org/10.1088/0957-4484/22/11/115706

[59] A. C. Nkele et al., “Recent Advances in Materials for Supercapacitors,” Nano-Horizons, vol. 1, no. 1, pp. 1–32, Sept. 2022, doi: 10.25159/NanoHorizons.53db1f5bd625. DOI: https://doi.org/10.25159/NanoHorizons.53db1f5bd625

[60] W. Li, Y. Bu, H. Jin, J. Z. J. Wang, S. Wang and J. Wang, “The Preparation of Hierarchical Flowerlike NiO/Reduced Graphene Oxide Composites for High Performance Supercapacitor Applications,” Energy Fuels, vol. 27, no. 10, pp. 6304−6310, Sept. 2013, doi: 10.1021/ef401190b. DOI: https://doi.org/10.1021/ef401190b

[61] Y. Zhang, Y. Zhang, Y. Zhang, H. Si and L. Sun, “Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors,” Nano-Micro Lett., vol. 11, p. 11, Apr. 2019, doi: 10.1007/s40820-019-0265-1. DOI: https://doi.org/10.1007/s40820-019-0265-1

[62] R. M. Obodo et al., “Fabrication of Co3(PO4)2@Mn₃(PO4)2@Ni3(PO4)2 electrodes optimized using Vitex doniana leaf extract for supercapacitor application,” Ionics, vol. 30, pp. 4951–4965, Jun. 2024, doi: 10.1007/s11581-024-05631-0. DOI: https://doi.org/10.1007/s11581-024-05631-0

[63] R. M. Obodo et al., “Enhancement of synergistic effects of Cu2O@MnO2@NiO Using Sarcophrynium Brachystachys leaf extract for supercapacitor electrode application,” Next Mater., vol. 5, p. 100244, Oct. 2024, doi: 10.1016/j.nxmate.2024.100244. DOI: https://doi.org/10.1016/j.nxmate.2024.100244

[64] R. M. Obodo et al., “Optimization of MnO2, NiO and MnO2@NiO electrodes using graphene oxide for supercapacitor applications,” Curr. Res. Green Sustain. Chem., vol. 5, p. 100345, 2022, doi: 10.1016/j.crgsc.2022.100345. DOI: https://doi.org/10.1016/j.crgsc.2022.100345

Downloads

Published

2025-06-17

How to Cite

[1]
R. M. Obodo, “Exploring the Potential of Co3O4@MnO2@ZnO Enhanced with Vitex Doniana Leaf Extract for Supercapacitor Electrode Applications”, NH, vol. 4, p. 26 pages, Jun. 2025.

Issue

Section

Articles