Enhanced Physical Properties of Cobalt Oxide Nanoparticles for Energy Storage Applications
DOI:
https://doi.org/10.25159/3005-2602/16471Keywords:
bandgap, cobalt, CV, optical, oxide, SEM, XRDAbstract
Cobalt dioxide (CoO₂) nanostructured material was synthesised via a solid-state reaction using cobalt nitrate tetrahydrate (Co(NO₃)₂·4H₂O) and sodium hydroxide (NaOH) as precursors. The resulting materials were fabricated into three distinct working electrodes and evaluated electrochemically in a three-electrode configuration using 3 M KOH as the electrolyte. Cyclic voltammetry revealed pronounced redox peaks, which confirmed Faradaic charge storage behaviour. At a scan rate of 10 mV·s⁻¹, the specific capacitances of CoO₂ samples annealed at 25 °C, 250 °C and 300 °C were 223, 348 and 473 F g⁻¹, respectively. This indicated improved performance with increasing annealing temperature. X-ray diffraction patterns showed characteristic peaks corresponding to the (111), (112), (200), (211) and (311) planes, which confirmed the crystalline nature of the CoO₂ nanostructures. Annealing was found to significantly influence morphology, crystallinity and electronic properties, with the bandgap narrowing from 2.00 eV (unannealed) to 1.77–1.86 eV (annealed). These results demonstrate that thermal treatment enhances the electrochemical and structural properties of CoO₂, which highlights its potential as a high-performance electrode material for next-generation energy storage devices.
References
[1] N. A. M. Barakat, M. S. Khil, F. A. Sheikh and H. Y. Kim, “Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process,” J. Phys. Chem. C, vol. 112, no. 32, pp. 12225–12233, Jul. 2008, doi: 10.1021/jp8027353. DOI: https://doi.org/10.1021/jp8027353
[2] A. S. Chang et al., “Highly Heterogeneous Morphology of Cobalt Oxide Nanostructures for the Development of Sensitive and Selective Ascorbic Acid Non-Enzymatic Sensor,” Biosensors, vol. 13, no. 1, Jan. 2023, doi: 10.3390/bios13010147. DOI: https://doi.org/10.3390/bios13010147
[3] J. S. Choi and C. H. Yo, “Study of the Nonstoichiometric Compositions of Cobaltous Oxide,” Inorg. Chem., vol. 13, no. 7, pp. 1720–1724, Jul. 1974, doi: 10.1021/ic50137a037. DOI: https://doi.org/10.1021/ic50137a037
[4] M. Alheshibri et al., “Tailoring the surface morphology of nanostructured cobalt oxide for high-sensitivity CO sensor,” J. Mater. Sci., vol. 57, no. 27, pp. 12865–12874, Jul. 2022, doi: 10.1007/s10853-022-07438-8. DOI: https://doi.org/10.1007/s10853-022-07438-8
[5] H. Eskalen, S. Kerli and Ş. Özgan, “Hydrothermally Produced Cobalt Oxide Nanostructures at Different Temperatures and Effect on Phase Transition Temperature and Threshold Voltage of Nematic Liquid Crystal Host,” Cobalt, Dec. 2017, doi: 10.5772/intechopen.70946. DOI: https://doi.org/10.5772/intechopen.70946
[6] P. S. Gaikar, A. P. Angre, G. Wadhawa, P. V. Ledade, S. H. Mahmood and T. L. Lambat, “Green synthesis of cobalt oxide thin films as an electrode material for electrochemical capacitor application,” Curr. Res. Green Sustain. Chem., vol. 5, 2022, doi: 10.1016/j.crgsc.2022.100265. DOI: https://doi.org/10.1016/j.crgsc.2022.100265
[7] M. J. K. Reddy, S. H. Ryu and A. M. Shanmugharaj, “Synthesis of nanostructured lithium cobalt oxide using cherry blossom leaf templates and its electrochemical performances,” Electrochim. Acta, vol. 189, pp. 237–244, Jan. 2016, doi: 10.1016/j.electacta.2015.12.079. DOI: https://doi.org/10.1016/j.electacta.2015.12.079
[8] S. Kuboon and Y. H. Hu, “Study of NiO-CoO and Co3O4-Ni3O4 Solid Solutions in Multiphase Ni-Co-O Systems,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 2015–2020, Jan. 2011, doi: 10.1021/ie101249r. DOI: https://doi.org/10.1021/ie101249r
[9] J. Mei, T. Liao, G. A. Ayoko, J. Bell and Z. Sun, “Cobalt oxide-based nanoarchitectures for electrochemical energy applications,” Prog. Mater. Sci., vol. 103, pp. 596–677, Jun. 2019, doi: 10.1016/j.pmatsci.2019.03.001. DOI: https://doi.org/10.1016/j.pmatsci.2019.03.001
[10] F. Manteghi, S. H. Kazemi, M. Peyvandipour and A. Asghari, “Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors,” RSC Adv., vol. 5, no. 93, pp. 76458–76463, 2015, doi: 10.1039/c5ra09060a. DOI: https://doi.org/10.1039/C5RA09060A
[11] R. K. Nare et al., “Sonication-supported synthesis of cobalt oxide assembled on an N-MWCNT composite for electrochemical supercapacitors via three-electrode configuration,” Sci. Rep., vol. 12, no. 1, pp. 1–10, Feb. 2022, doi: 10.1038/s41598-022-05964-8. DOI: https://doi.org/10.1038/s41598-022-05964-8
[12] A. ul Rehman et al., “Enhanced Solar Cell Efficiency with Tin-Based Lead-Free Material (FASnl3) through SCAPS-1D Modeling,” Eurasian J. Sci. Technol., vol. 4, no. 3, pp. 244–252, Jul. 2024, doi: 10.48309/ejst.2024.429200.1118.
[13] I. L. Ikhioya, N. Alghamdi, N. M. Ugwu, R. N. Odoh, S. E. Omeje, and D. C. Ikeh, “Fabrication of gadolinium oxide into the matrix of ZIF-67 via direct combination method for energy storage application,” Hybrid Adv., vol. 8, p. 100358, Mar. 2025, doi: 10.1016/j.hybadv.2024.100358. DOI: https://doi.org/10.1016/j.hybadv.2024.100358
[14] L. A. Nnannaa, U. Jospeh, E. C. Nwaokorongwu, U. A. Ezere, N. I. Akpu and I. L. Ikhioya, “Impact of annealing temperature on praseodymium cerium telluride nanoparticles synthesise via hydrothermal approach for optoelectronic application,” Mater. Res. Innov., vol. 28, no. 6, pp. 448–459, Feb. 2024, doi: 10.1080/14328917.2024.2320982. DOI: https://doi.org/10.1080/14328917.2024.2320982
[15] N. Alghamdi and I. L. Ikhioya, “Improved efficiency of silver incorporation in the lattice of zirconium oxide via hydrothermal process for photovoltaic application,” J. Indian Chem. Soc., vol. 102, no. 6, p. 101719, Jun. 2025, doi: 10.1016/j.jics.2025.101719. DOI: https://doi.org/10.1016/j.jics.2025.101719
[16] N. B. Velhal, T. H. Yun, J. Ahn, T. Kim, J. Kim and C. Yim, “Tailoring cobalt oxide nanostructures for stable and high-performance energy storage applications,” Ceram. Int., vol. 49, no. 3, pp. 4889–4897, Feb. 2023, doi: 10.1016/j.ceramint.2022.10.003. DOI: https://doi.org/10.1016/j.ceramint.2022.10.003
[17] C. Petrarca et al., “Cobalt magnetic nanoparticles as theranostics: Conceivable or forgettable?,” Nanotechnol. Rev., vol. 9, no. 1, pp. 1522–1538, Dec. 2020, doi: 10.1515/ntrev-2020-0111. DOI: https://doi.org/10.1515/ntrev-2020-0111
[18] R. S. Redekar et al., “Review on recent advancements in chemically synthesized manganese cobalt oxide (MnCo2O4) and its composites for energy storage application,” Chem. Eng. J., vol. 450, no. 1, Dec. 2022, doi: 10.1016/j.cej.2022.137425. DOI: https://doi.org/10.1016/j.cej.2022.137425
[19] A. Hussain, F. Ali and H. Hammad, “Enhanced specific capacitance , structural , optical , and morphological study of carbon ions incorporated into the lattice of ZrCuO2 nanoparticle synthesized by hydrothermal method,” Hybrid Adv., vol. 5, p. 100170, Apr. 2024, doi: 10.1016/j.hybadv.2024.100170. DOI: https://doi.org/10.1016/j.hybadv.2024.100170
[20] I. L. Ikhioya and A. C. Nkele, “Green synthesis and characterization of aluminum oxide nanoparticle using neem leaf extract (Azadirachta Indica),” Hybrid Adv., vol. 5, p. 100141, Apr. 2024, doi: 10.1016/j.hybadv.2024.100141. DOI: https://doi.org/10.1016/j.hybadv.2024.100141
[21] A. J. Laghari et al., “Surface modification of Co3O4 nanostructures using wide range of natural compounds from rotten apple juice for the efficient oxygen evolution reaction,” Int. J. Hydrogen Energy, vol. 48, no. 41, pp. 15447–15459, May 2023, doi: 10.1016/j.ijhydene.2023.01.072. DOI: https://doi.org/10.1016/j.ijhydene.2023.01.072
[22] S. D. Karse and M. C. Fite, “Studies on structural and optical properties of cobalt oxide nanoparticles using co-precipitation,” Phys. B Condens. Matter, vol. 689, Sept. 2024, doi: 10.1016/j.physb.2024.416181. DOI: https://doi.org/10.1016/j.physb.2024.416181
[23] V. Adimule, S. DV, R. Joshi, A. K. Swetha, K. Sharma and R. Keri, “Influence of morphology, crystal structures on the enhanced photoluminescence dynamics, zeta potential, and AC resistance of disc shaped cesium oxidex@cobalt oxide nanostructures,” Results Opt., vol. 17, Dec. 2024, doi: 10.1016/j.rio.2024.100742. DOI: https://doi.org/10.1016/j.rio.2024.100742
[24] S. G. Sarwar, I. L. Ikhioya, S. Afzal and I. Ahmad, “Supercapitance performance evaluation of MXene/Graphene/NiO composite electrode via in situ precipitation technique,” Hybrid Adv., vol. 4, p. 100105, Dec. 2023, doi: 10.1016/j.hybadv.2023.100105. DOI: https://doi.org/10.1016/j.hybadv.2023.100105
[25] H. Shah, S. Afzal, M. Usman, K. Shahzad and I. L. Ikhioya, “Impact of Annealing Temperature on Lanthanum Erbium Telluride (La0.1Er0.2Te0.2) Nanoparticles Synthesized via Hydrothermal Approach,” Adv. J. Chem. Sect. A, vol. 6, no. 4, pp. 342–351, Oct. 2023, doi: 10.22034/ajca.2023.407424.1386.
[26] K. I. Udofia, I. L. Ikhioya, D. N. Okoli and A. J. Ekpunobi, “Impact of doping on the physical properties of PbSe chalcogenide material for photovoltaic application,” Asian J. Nanosci. Mater., vol. 6, no. 2, pp. 135–147, Jun. 2023, doi: 10.26655/AJNANOMAT.2023.2.3. DOI: https://doi.org/10.26655/AJNANOMAT.2023.2.3
[27] I. L. Ikhioya et al., “The effects of nitrogen ions’ implantation on La0.5Ca0.5MnO3 nanocomposite electrode for high-performance supercapacitor applications,” J. Mater. Sci.: Mater. Electron., vol. 36, no. 800, May 2025, doi: 10.1007/s10854-025-14859-z. DOI: https://doi.org/10.1007/s10854-025-14859-z
[28] I. Rufus, A. Peter, S. O. Aisida and I. L. Ikhioya, “Influence of manganese molarity incorporation on manganese silver sulphide semiconductor material for photovoltaic applications,” Results Opt., vol. 12, p. 100464, Jul. 2023, doi: 10.1016/j.rio.2023.100464. DOI: https://doi.org/10.1016/j.rio.2023.100464
[29] S. O. Samuel, M. L. E. Frank, E. P. Ogherohwo, A. Ekpekpo, J. T. Zhimwang and I. L. Ikhioya, “Influence of Deposition Voltage on Strontium Sulphide Doped Silver for Optoelectronic Application,” East Eur. J. Phys., vol. 1, pp. 189–196, Mar. 2023, doi: 10.26565/2312-4334-2023-1-25. DOI: https://doi.org/10.26565/2312-4334-2023-1-25
[30] I. O. Blessing, H. Shah, S. Afzal and I. L. Ikhioya, “Enhanced structural properties of electrochemically synthesised NiFeS using 500 keV carbon C++ ions irradiation,” Mater. Res. Innov., vol. 28, no. 4, pp. 251–262, Jul. 2023, doi: 10.1080/14328917.2023.2262315. DOI: https://doi.org/10.1080/14328917.2023.2262315
[31] E. O. Ojegu, S. O. Samuel, M. O. Osiele, G. E. Akpojotor and I. L. Ikhioya, “Optimisation of deposition voltage of zirconium-doped chromium telluride via typical three-electrode cell electrochemical deposition technique,” Mater. Res. Innov., vol. 28, no. 3, pp. 137–145, Aug. 2023, doi: 10.1080/14328917.2023.2243063. DOI: https://doi.org/10.1080/14328917.2023.2243063
[32] E. O. Ojegu, O. B. Odia, M. O. Osiele, A. E. Godfrey and I. L. Ikhioya, “Effect of precursor temperature on electrochemically deposited zirconium doped chromium telluride using a standard three-electrode system,” J. Mater. Environ. Sci., vol. 14, no. 11, pp. 1148–1159, 2023, https://www.jmaterenvironsci.com/Document/vol14/vol14_N11/JMES-2023-14113-Ojegu.pdf.
[33] S. Hettler, K. S. Roy, R. Arenal and L. S. Panchakarla, “Stable CoO2 Nanoscrolls with Outstanding Electrical Properties,” Adv. Mater. Interfaces, vo. 11, no. 31, Nov. 2024, doi: 10.1002/admi.202400317. DOI: https://doi.org/10.1002/admi.202400317
[34] G. Wang et al., “Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods,” J. Phys. Chem. C, vol. 113, no. 11, pp. 4357–4361, Feb. 2009, doi: 10.1021/jp8106149. DOI: https://doi.org/10.1021/jp8106149
[35] R. Zhou, X. Bi, X. Yuan, L. Zhang and Q. Huang, “Significant Improvement of the Electrochemical Performance of CoO Nanoparticles Through Activating Synergistic Effects by Doping with Nickel,” Eur. J. Inorg. Chem., vol. 2020, no. 30, pp. 2889–2895, Aug. 2020, doi: 10.1002/ejic.202000357. DOI: https://doi.org/10.1002/ejic.202000357
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shoaib Akram, Muneeb ur Rahman, Fazli Maula, Osama Tariq Satti, Fawad Ali, Imosobomeh L. Ikhioya

This work is licensed under a Creative Commons Attribution 4.0 International License.