A Novel Reactive Element Doping Strategy for Metal Oxides Using Pulsed Laser Deposition: Demonstration with Sulphur in VO2

Authors

  • Wenqiang Xiang INRS Energy, Materials and Telecommunications Research Centre
  • Baptiste San Nicolas INRS Energy, Materials and Telecommunications Research Centre
  • Joëlle Margot University of Montreal
  • Bruno Palpant Paris-Saclay University https://orcid.org/0000-0003-1376-2533
  • Mohamed Chaker INRS Energy, Materials and Telecommunications Research Centre https://orcid.org/0000-0001-9781-8842

DOI:

https://doi.org/10.25159/3005-2602/19460

Keywords:

vanadium dioxide, pulsed-laser deposition, doping, semiconductor to metal transition, sulphur, thin films

Abstract

Vanadium dioxide (VO2) is a phase transition material with significant potential for applications in electrical and optical devices, owing to its remarkable properties such as a sharp change in resistivity and infrared transmittance during the phase transition. Lowering the transition temperature (Tc) while maintaining a high transition amplitude is crucial to many applications; however, conventional doping elements often compromise its transition amplitude. Recent simulations suggest that chalcogen doping, particularly with sulphur, could effectively tune Tc without diminishing the transition performance. Sulphur doping, however, poses challenges due to the tendency of sulphur to react with oxygen during VO2’s high-temperature deposition process, forming volatile sulphur oxides that are lost in the vacuum system. This study introduces a novel sulphur doping approach for VO2 by using pulsed-laser deposition (PLD) from a V2S3 target. By varying the laser repetition rate, sulphur incorporation was precisely controlled without inducing significant defects. Sulphur doping reduced Tc by up to 44.3 °C/at.%, one of the most efficient reductions reported. However, higher sulphur concentrations led to reduced electrical and optical contrast, attributed to grain boundary strain and disorientation. Lower laser repetition rates facilitated uniform grain growth, sharpening phase transitions and narrowing hysteresis widths. This study underscores the importance of deposition parameters in optimising VO2 properties and demonstrates the potential of PLD-based strategies for incorporating reactive elements into metal oxides. Future research should further investigate the distinct mechanisms of sulphur doping to refine material properties for advanced applications.

References

[1] Z. Shao et al., “Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials,” NPG Asia Mater., vol. 10, pp. 581–605, Jul. 2018, doi: 10.1038/s41427-018-0061-2. DOI: https://doi.org/10.1038/s41427-018-0061-2

[2] M. E. Warwick and R. Binions, “Advances in thermochromic vanadium dioxide films,” J. Mater. Chem. A, vol. 2, no. 10, pp. 3275–3292, 2014, doi: 10.1039/C3TA14124A. DOI: https://doi.org/10.1039/C3TA14124A

[3] E. E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films,” Appl. Opt., vol. 30, no. 19, pp. 2782–2787, 1991, doi: 10.1364/AO.30.002782. DOI: https://doi.org/10.1364/AO.30.002782

[4] Y. Ke et al., “Vanadium Dioxide: The Multistimuli Responsive Material and Its Applications,” Small, vol. 14, no. 39, p. 1802025, Sept. 2018, doi: 10.1002/smll.201802025. DOI: https://doi.org/10.1002/smll.201802025

[5] A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B, vol. 11, p. 4383, Jun. 1975, doi: 10.1103/PhysRevB.11.4383. DOI: https://doi.org/10.1103/PhysRevB.11.4383

[6] K. Liu et al., “Recent progresses on physics and applications of vanadium dioxide,” Mater. Today, vol. 21, no. 8, pp. 875–896, Oct. 2018, doi: 10.1016/j.mattod.2018.03.029. DOI: https://doi.org/10.1016/j.mattod.2018.03.029

[7] V. R. Morrison et al., “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Sci., vol. 346, no. 6208, pp. 445–448, Oct. 2014, doi: 10.1126/science.1253779. DOI: https://doi.org/10.1126/science.1253779

[8] W. Xiang, B. Le Drogoff and M. Chaker, “An innovative method to achieve large-scale high-quality VO2 thin films: Oxidation of vanadium nitride material deposited by sputtering,” Appl. Surf. Sci., vol. 633, p. 157607, Oct. 2023, doi: 10.1016/j.apsusc.2023.157607. DOI: https://doi.org/10.1016/j.apsusc.2023.157607

[9] Y. Yang et al., “Transmittance change with thickness for polycrystalline VO2 films deposited at room temperature,” J. Alloys Compd., vol. 791, pp. 648–654, Jun. 2019, doi: 10.1016/j.jallcom.2019.03.278. DOI: https://doi.org/10.1016/j.jallcom.2019.03.278

[10] A. Kumar et al., “A Comprehensive Review on Synthesis, Phase Transition, and Applications of VO2, J. Supercond. Nov. Magn., vol. 37, pp. 475–498, Feb. 2024, doi: 10.1007/s10948-024-06705-w. DOI: https://doi.org/10.1007/s10948-024-06705-w

[11] C. Jiang et al., “Phase-change VO2-based thermochromic smart windows,” Light Sci. Appl., vol. 13p. 255, Sept. 2924, doi: 10.1038/s41377-024-01560-9. DOI: https://doi.org/10.1038/s41377-024-01560-9

[12] M. Li et al., “Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows,” Small, vol. 13, no. 36, p. 1701147, Jul. 2017, doi: 10.1002/smll.201701147. DOI: https://doi.org/10.1002/smll.201701147

[13] Y. Cui et al., “Thermochromic VO2 for Energy-Efficient Smart Windows,” Joule, vol. 2, no. 9, pp. 1707–1746, Sept. 2018, doi: 10.1016/j.joule.2018.06.018. DOI: https://doi.org/10.1016/j.joule.2018.06.018

[14] M. Benkahoul et al., “Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications,” Sol. Energy Mater. Sol. Cells, vol. 95, pp. 3504–3508, Dec. 2011, doi: 10.1016/j.solmat.2011.08.014. DOI: https://doi.org/10.1016/j.solmat.2011.08.014

[15] A. Hendaoui et al., “Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films,” Appl. Phys. Lett., vol. 102, no. 6, Feb. 2013, https://doi.org/10.1063/1.4792277. DOI: https://doi.org/10.1063/1.4792277

[16] A. Hendaoui et al., “VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts,” Sol. Energy Mater. Sol. Cells, vol. 117, pp. 494–498, Oct. 2013, doi: 10.1016/j.solmat.2013.07.023. DOI: https://doi.org/10.1016/j.solmat.2013.07.023

[17] B. Xie et al., “Enhanced radiative heat transfer and modulation using VO2-based metasurfaces,” Int. J. Therm. Sci., vol. 208, p. 109442, Feb. 2025, doi: 10.1016/j.ijthermalsci.2024.109442. DOI: https://doi.org/10.1016/j.ijthermalsci.2024.109442

[18] B. Xie et al., “Design of VO2-based spacecraft smart radiator with low solar absorptance,” Appl. Therm. Eng., vol. 236, p. 121751, Jan. 2024, doi: 10.1016/j.applthermaleng.2023.121751. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121751

[19] Y. Zhou and S. Ramanathan, “Mott Memory and Neuromorphic Devices,” Proc. IEEE, vol. 103, no. 8, pp. 1289–1310, Aug. 2015, doi: 10.1109/JPROC.2015.2431914. DOI: https://doi.org/10.1109/JPROC.2015.2431914

[20] C. Lu et al., “Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO2 Thin Film,” Nanomater., vol. 11, no. 1, p. 114, Jan. 2021, doi: 10.3390/nano11010114. DOI: https://doi.org/10.3390/nano11010114

[21] Z. Hiroi, “Structural instability of the rutile compounds and its relevance to the metal–insulator transition of VO2,” Prog. Solid State Chem., vol. 43, nos. 1–2, pp. 47–69, May 2015, doi: 10.1016/j.progsolidstchem.2015.02.001. DOI: https://doi.org/10.1016/j.progsolidstchem.2015.02.001

[22] D. Wegkamp and J. Stähler, “Ultrafast dynamics during the photoinduced phase transition in VO2,” Prog. Surf. Sci., vol. 90, no. 4, pp. 464–502, Dec. 2015, doi: 10.1016/j.progsurf.2015.10.001. DOI: https://doi.org/10.1016/j.progsurf.2015.10.001

[23] M. Y. Valakh et al., “Variation of the metal-insulator phase transition temperature in VO2: An overview of some possible implementation methods,” Semicond. Phys. Quantum Electron. Optoelectron., vol. 27, no. 2, pp. 136-150, 2024, doi: 10.15407/spqeo27.02.136. DOI: https://doi.org/10.15407/spqeo27.02.136

[24] D. Koch and M. Chaker, “Chalcogen Doping as a Promising Strategy to Improve the Thermochromic Properties of Vanadium Dioxide,” J. Phys. Chem. C, vol. 128, no. 1, pp. 436–444, Jan. 2024, doi: 10.1021/acs.jpcc.3c06079. DOI: https://doi.org/10.1021/acs.jpcc.3c06079

[25] D. Koch and M. Chaker, “The Origin of the Thermochromic Property Changes in Doped Vanadium Dioxide,” ACS Appl. Mater. Interfaces, vol. 14, no. 20, pp. 23928–23943, May 2022, doi: 10.1021/acsami.2c02070. DOI: https://doi.org/10.1021/acsami.2c02070

[26] Y. Wu et al., “Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping,” Sci. Rep., vol. 5, p. 9328, May 2015, doi: 10.1038/srep09328. DOI: https://doi.org/10.1038/srep09328

[27] J.-L. Victor et al., “Doubling of the Phase Transition Temperature of VO2 by Fe Doping,” J. Phys. Chem. Lett., vol. 12, no. 32, pp. 7792–7796, Aug. 2021, doi: 10.1021/acs.jpclett.1c02179. DOI: https://doi.org/10.1021/acs.jpclett.1c02179

[28] M. A. Basyooni et al., “Tuning the Metal-Insulator Transition Properties of VO2 Thin Films with the Synergetic Combination of Oxygen Vacancies, Strain Engineering, and Tungsten Doping,” Nanomater., vol. 12, no. 9, p. 1470, Apr. 2022, doi: 10.3390/nano12091470. DOI: https://doi.org/10.3390/nano12091470

[29] S. A. Howard et al., “Digital Tuning of the Transition Temperature of Epitaxial VO2 Thin Films on MgF2 Substrates by Strain Engineering,” Adv. Mater. Interf., vol. 8, no. 9, p. 2001790, May 2021, doi: 10.1002/admi.202001790. DOI: https://doi.org/10.1002/admi.202001790

[30] J. Jeong et al., “Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation, Sci., vol. 339, no. 6126, pp. 1402–1405, Mar. 2013, doi: 10.1126/science.1230512. DOI: https://doi.org/10.1126/science.1230512

[31] E. M. Heckman et al., “Electrical and optical switching properties of ion implanted VO2 thin films,” Thin Solid Films, vol. 518, no. 1, pp. 265–268, Nov. 2009, doi: 10.1016/j.tsf.2009.05.063. DOI: https://doi.org/10.1016/j.tsf.2009.05.063

[32] P. Jin, S. Nakao and S. Tanemura, “High-energy W ion implantation into VO2 thin film,” Nucl. Instrum. Methods Phys. Res. B, vol. 141, nos 1–4, pp. 419–424, May 1998, doi: 10.1016/S0168-583X(98)00177-3. DOI: https://doi.org/10.1016/S0168-583X(98)00177-3

[33] Y. Xue and S. Yin, “Element doping: a marvelous strategy for pioneering the smart applications of VO2,” Nanoscale, vol. 14, no. 13, pp. 11054–11097, 2022, doi: 10.1039/D2NR01864K. DOI: https://doi.org/10.1039/D2NR01864K

[34] A. Romanyuk et al., “Temperature-induced metal-semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol Energy Mater. Sol. Cells, vol. 91, no. 19, pp. 1831–1835, Nov. 2007, doi: 10.1016/j.solmat.2007.06.013. DOI: https://doi.org/10.1016/j.solmat.2007.06.013

[35] F. Kong et al., “Synthesis and thermal stability of W-doped VO2 nanocrystals,” Mater. Res. Bull., vol. 46, no. 11, pp. 2100–2104, Nov. 2011, doi: 10.1016/j.materresbull.2011.06.030. DOI: https://doi.org/10.1016/j.materresbull.2011.06.030

[36] G. Karaoglan-Bebek et al., “Continuous tuning of W-doped VO2 optical properties for terahertz analog applications,” Appl. Phys. Lett., vol. 105, p. 201902, Nov. 2014, doi: 10.1063/1.4902056. DOI: https://doi.org/10.1063/1.4902056

[37] B. Rajeswaran and A. M. Umarji, “Effect of W addition on the electrical switching of VO2 thin films,” AIP Adv., vol. 6, Mar. 2016, doi: 10.1063/1.4944855. DOI: https://doi.org/10.1063/1.4944855

[38] G. Pan et al., “Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method,” Sci. Rep., vol. 7, p. 6132, Jul. 2017, doi: 10.1038/s41598-017-05229-9. DOI: https://doi.org/10.1038/s41598-017-05229-9

[39] C. Ling et al., “W Doping and Voltage Driven Metal-Insulator Transition in VO2 Nano-Films for Smart Switching Devices,” ACS Appl. Nano Mater., vol. 2, no. 10, pp. 6738–6746, Sept. 2019, doi: 10.1021/acsanm.9b01640. DOI: https://doi.org/10.1021/acsanm.9b01640

[40] K. Mulchandani et al., “Structural transformation and tuning of electronic transitions by W-doping in VO2 thin films,” Superlattices Microstruct., vol. 154, p. 106883, Jun. 2021, doi: 10.1016/j.spmi.2021.106883. DOI: https://doi.org/10.1016/j.spmi.2021.106883

[41] A. O. Suleiman et al., “Tuning VO2 phase stability by a combined effect of Cr doping and oxygen pressure,” Appl. Surf. Sci., vol. 571, p. 151267, Jan. 2022, doi: 10.1016/j.apsusc.2021.151267. DOI: https://doi.org/10.1016/j.apsusc.2021.151267

[42] M. Zzaman et al., “Elevated Transition Temperature of VO2 Thin Films via Cr Doping: A Combined Electrical Transport and Electronic Structure Study,” J. Electron. Mater., vol. 52, pp. 3818–3830, Mar. 2023, doi: 10.1007/s11664-023-10359-0. DOI: https://doi.org/10.1007/s11664-023-10359-0

[43] N. Mlyuka, G. A. Niklasson and C.-G. Granqvist, “Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature,” Appl. Phys. Lett., vol. 95, Oct. 2009, doi: 10.1063/1.3229949. DOI: https://doi.org/10.1063/1.3229949

[44] J. Zhou et al., “Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature,” Phys. Chem. Chem. Phys., vol. 15, no. 20, pp. 7505–7511, 2013, doi: 10.1039/c3cp50638j. DOI: https://doi.org/10.1039/c3cp50638j

[45] B. Brown et al., “Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films,” J. Appl. Phys., vol. 113, May 2013, doi: 10.1063/1.4803551. DOI: https://doi.org/10.1063/1.4803551

[46] B. G. Chae, H. T. Kim and S. J. Yun, “Characteristics of W- and Ti-Doped VO2 Thin Films Prepared by Sol-Gel Method,” Electrochem. Solid-State Lett., vol. 11, p. D53, Apr. 2008, doi: 10.1149/1.2903208. DOI: https://doi.org/10.1149/1.2903208

[47] Y. Hu et al., “Preparation and phase transition properties of Ti-doped VO2 films by sol-gel process,” J. Sol-Gel Sci. Technol., vol. 78, pp. 19–25, Jan. 2016, https://doi: 10.1007/s10971-015-3913-z. DOI: https://doi.org/10.1007/s10971-015-3913-z

[48] I. Takahashi, M. Hibino and T. Kudo, “Thermochromic Properties of Double-Doped VO2 Thin Films Prepared by a Wet Coating Method Using Polyvanadate-Based Sols Containing W and Mo or W and Ti,” Jpn. J. Appl. Phys., vol. 40, p. 1391, 2001, doi: 10.1143/JJAP.40.1391. DOI: https://doi.org/10.1143/JJAP.40.1391

[49] T. Hajlaoui et al., “Metal-insulator transition temperature of boron-doped VO2 thin films grown by reactive pulsed laser deposition,” Scripta Materialia, vol. 177, pp. 32–37, Mar. 2020, doi: 10.1016/j.scriptamat.2019.09.019. DOI: https://doi.org/10.1016/j.scriptamat.2019.09.019

[50] N. Émond, A. Hendaoui and M. Chaker, “Low resistivity WxV1−xO2-based multilayer structure with high temperature coefficient of resistance for microbolometer applications,” Appl. Phys. Lett., vol. 107, Oct. 2015, doi: 10.1063/1.4932954. DOI: https://doi.org/10.1063/1.4932954

[51] W. Xiang et al., “High-quality VO2 films synthesized on polymer substrates using room-temperature pulsed laser deposition and annealing,” Ceram. Int., vol. 50, no. 1, pp. 838–846, Jan. 2024, doi: 10.1016/j.ceramint.2023.10.168. DOI: https://doi.org/10.1016/j.ceramint.2023.10.168

[52] M. Wan et al., “Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2,” Appl. Surf. Sci., vol. 410, pp. 363–372, Jul. 2017, doi: 10.1016/j.apsusc.2017.03.138. DOI: https://doi.org/10.1016/j.apsusc.2017.03.138

[53] S. Chouteau et al., “Investigation of the metal-to-insulator transition of N-doped VO2(M1) thin films,” Appl. Surf. Sci., vol. 554, p. 149661, Jul. 2021, doi: 10.1016/j.apsusc.2021.149661. DOI: https://doi.org/10.1016/j.apsusc.2021.149661

[54] Q. Lu et al., “Metal-insulator transition tuned by oxygen vacancy migration across TiO2/VO2 interface,” Sci. Rep., vol. 10, p. 18554, Oct 2020, doi: 10.1038/s41598-020-75695-1. DOI: https://doi.org/10.1038/s41598-020-75695-1

[55] L. Fan et al., “Comprehensive studies of interfacial strain and oxygen vacancy on metal-insulator transition of VO2 film,” J. Phys.: Condens. Matter, vol. 28, p. 255002, May 2016, doi: 10.1088/0953-8984/28/25/255002. DOI: https://doi.org/10.1088/0953-8984/28/25/255002

[56] K. L. Gurunatha et al., “Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles,” Adv. Funct. Mater., vol. 30, no. 49, p. 2005311, Dec. 2020, doi: 10.1002/adfm.202005311. DOI: https://doi.org/10.1002/adfm.202005311

[57] M. Gurvitch et al., “VO2 films with strong semiconductor to metal phase transition prepared by the precursor oxidation process,” J. Appl. Phys., vol. 102, Aug. 2007, doi: 10.1063/1.2764245. DOI: https://doi.org/10.1063/1.2764245

[58] C. Chen et al., “Influence of defects on structural and electrical properties of VO2 thin films,” J. Appl. Phys., vol. 110, Jul. 2011, doi: 10.1063/1.3609084. DOI: https://doi.org/10.1063/1.3609084

[59] Y. Liu et al., “Unraveling Structural Phase Transformation by Simultaneously Determining the Lattice Constants and Mismatch Angle in VO2/Al2O3 Epitaxial Thin Films,” Front. Mater., vol. 9, p. 866468, Mar. 2022, doi: 10.3389/fmats.2022.866468. DOI: https://doi.org/10.3389/fmats.2022.866468

[60] M. J. Powell et al., “Qualitative XANES and XPS Analysis of Substrate Effects in VO2 Thin Films: A Route to Improving Chemical Vapor Deposition Synthetic Methods?,” J. Phys. Chem. C, vol. 121, no. 37, pp. 20345–20352, Aug. 2017, doi: 10.1021/acs.jpcc.7b06044. DOI: https://doi.org/10.1021/acs.jpcc.7b06044

[61] J. A. Thornton, “High Rate Thick Film Growth,” Ann. Rev. Mater. Sci., vol. 7, pp. 239–260, Aug. 1977, doi: 10.1146/annurev.ms.07.080177.001323. DOI: https://doi.org/10.1146/annurev.ms.07.080177.001323

[62] R. Eguchi et al., “Angle-resolved photoemission study of the mixed valence oxide V6O13: Quasi-one-dimensional electronic structure and its change across the metal-insulator transition,” Phys. Rev. B, vol. 65, p. 205124, May 2002, doi: 10.1103/PhysRevB.65.205124. DOI: https://doi.org/10.1103/PhysRevB.65.205124

[63] Z. Yang, C. Ko and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions,” Ann. Rev. Mater. Res., vol. 41, pp. 337–367, Aug. 2011, doi: 10.1146/annurev-matsci-062910-100347. DOI: https://doi.org/10.1146/annurev-matsci-062910-100347

[64] H. Kim et al., “Optimization of the semiconductor-metal transition in VO2 epitaxial thin films as a function of oxygen growth pressure,” Appl. Phys. Lett., vol. 104, Feb. 2014, doi: 10.1063/1.4866806. DOI: https://doi.org/10.1063/1.4866806

[65] F. C. Case, “Modifications in the phase transition properties of predeposited VO2 films,” J. Vac. Sci. Technol. A, vol. 2, pp. 1509–1512., Oct. 1984, doi: 10.1116/1.572462. DOI: https://doi.org/10.1116/1.572462

[66] J. Jian et al., “Roles of grain boundaries on the semiconductor to metal phase transition of VO2 thin films,” Appl. Phys. Lett., vol. 107, Sept. 2015, doi: 10.1063/1.4930831. DOI: https://doi.org/10.1063/1.4930831

[67] S. Chen et al., “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C, vol. 118, no. 33, pp. 18938–18944, Aug. 2014, doi: 10.1021/jp5056842. DOI: https://doi.org/10.1021/jp5056842

[68] J. F. de Natale, P. Hood and A. B. Harker, “Formation and characterization of grain‐oriented VO2 thin films,” J. Appl. Phys., vol. 66, pp. 5844–5850, Dec. 1989, doi: 10.1063/1.343605. DOI: https://doi.org/10.1063/1.343605

[69] D. Gu et al., “Influence of Gadolinium-doping on the microstructures and phase transition characteristics of VO2 thin films,” J. Alloys Comp., vol. 705, pp. 64–69, May 2017, doi: 10.1016/j.jallcom.2017.02.138. DOI: https://doi.org/10.1016/j.jallcom.2017.02.138

[70] T. E. Alivio et al., “Postsynthetic Route for Modifying the Metal-Insulator Transition of VO2 by Interstitial Dopant Incorporation,” Chem. Mater., vol. 29, no. 12, pp. 5401–5412, May 2017, doi: 10.1021/acs.chemmater.7b02029. DOI: https://doi.org/10.1021/acs.chemmater.7b02029

[71] R. Lopez et al., “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B, vol. 65, p. 224113, Jun. 2022, doi: 10.1103/PhysRevB.65.224113. DOI: https://doi.org/10.1103/PhysRevB.65.224113

Downloads

Published

2026-02-13

How to Cite

[1]
W. Xiang, B. San Nicolas, J. Margot, B. Palpant, and M. Chaker, “A Novel Reactive Element Doping Strategy for Metal Oxides Using Pulsed Laser Deposition: Demonstration with Sulphur in VO2”, NH, vol. 5, p. 18 pages, Feb. 2026.

Issue

Section

Articles